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Abstract

- The equilibrium of the plasma limited by the material
limiter or the separatrix in the linear stellarator system
was solved numerically by the finite difference method.
The expansion and the deformation of the plasma column
due to the longitudinal plasma current and the plasma
pressure were obtained and were in agreement with the predicted
values in the simple case where the analytical solutions were

already found.



1. Introduction

In recent years, the axisymmetric equilibria of the
plasma limited by the material limiter or the separatrix
have been solved numerically by the various authors.l) These
calculations are indispensable for designing the system of
the poloidal divertor and the apparatus of the non-circular
tokamak, the shape of which is controlled by the external
coil system.z) In the toroidal stellarator experiment, the
information about the deformation of the magnetic surface
due to the plasma pressure or due to the toroidal plasma
current is necessary. The computational study of the helical
equilibria of B = 1 plasma with free boundary was done by

3)

N. Friedman. His calculation was qualitatively applicable
to the Scyllac experiment.

In this paper, the heiical equilibrium of the plasma
with free and diffuse boundary was solved numerically as the
zero order approximation of low B plasma in a toroidal
stellarator. As a special case of this analysis, we can
obtain free boundary axisymmetric equilibria. In the case
of quasi-homogeneous plasma current, the theoretical analysis
by P. Barberio—Corsetti4) and the one extended in this paper

can give satisfactory agreement to the result obtained by the

finite diference method.

2. Approximate analysis of free boundary equilibria

We use the differential equation of the helical plasma

equilibria in the cylindrical system, r, 9, 25)
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where § is the stream function of the magnetic field and the
function of r and ¢ = 26 + kz only.
Because of the helical symmetry, the following relations

are also available
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In the simple case of B¢ = B¢o + sy, s = const and av 0,
the general solutions of equation (1) in the plasma wp, and
in the vacuum wv’ were obtained by Chandrasekhar et al.6)
B B
- - %0, _¢o - kr
¢p = S = {Jo(sr) . Jl(sr)}
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Now we are going to apply these equations to a specific case
of helical plasma equilibria. Figure 1 shows the schematics
of the linear stellarator system under consideration. The
vacuum stellarator field is produced by the helical sheet
coil which is placed at r = a_. The current distribution on

c

the sheet coil is given by the following equation

i = io cos (26 + kz). (12)

The plasma boundary is limited by the separatrix or the
material limiter, of which diameter is 2b. The Bz field is
produced by the coil which is placed outside the helical
sheet coil. The helical coil current Ih’ which flows in one

direction, is given by

J
2% ac
Ih = i, cos(28) x acde = 27? i, - (13)
-
2%

and the stream function }y, due to the helical sheet current

is, in the term of Ih
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If we confine ourselves to the analysis of the deformation
of the magnetic surface and the shift of the separatrix due
to the presence of the plasma, we may neglect the higher
order terms which contain cos(nf¢), n 2 2. Also, we may
neglect the presence of the conductive shell placed at r = r,

for convenience.

Then we can assume that
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B =0, C_. =0 nx2. (16)

From the boundary condition of r = a » We can get the equation

(17),
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The shape of I is generally not circular, so the determi-
nation of the coefficient is a complex problem.

If we assume that the deviation of the shape of the
separatrix from circle is small, we can connect the equations
(14) and (15) till the accuracy of 0(2)! by the methoa?)
adopted by P. Barberio-Corsetti, where 8 is the deviation of
the separatrix from the circle of the radius Ro' We define

the function Py s Pyr 9, by
Wp(r, 8) = Pp(r) + € qp(r, 8) , (21)

Tv(r, 0)

p,(r) + ¢ q,(xr, 6) , (22)

and assume that € << 1. Then to order one

B¢o + s pp(RO) = ke, /4 - B, (23)

P, (R,) =p.(R) . (24)

Since, the deviation of the plasma boundary from the circle

§ is § > -eq/p' to order €, we get

= (25)
%R, = q(R)

qé - qpp;/pé = 9, - 9,Py/Py ) (26)

where the prime means é% and everything is calculated at

r = R,. From (23) and (24) we can get neglecting (ocr)2 and
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For £ = 2 system, from equations (25), (26) we have, expanding

for small radius,

2bO
Al = . (29)
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Substituting (26) into (9), we obtain the quation for the

magnetic surfaces near the center,4)
2 2bo
r {1 - cos26} = const . (30)
B¢O(l+s/2k)
For & = 3 system, we have
(k+%s)2 k2
Al = + 3b 3 T3 - (31)
(k+s)” k

1

Substituting (31) into (9) and by differentiating (9), we
have the equation of the distance of hyperbolic singular
point to the axis, in the presence of plasma current

S

=118 (145

ry 5 i . (32)

Although (32) was obtained for € << 1, equation (32) seems to

be applicable for € x 1, judging from the fact that equation



(29) gives the exact distance of the hyperbolic point in the

case of s = 0.

3. Numerical scheme

Equation (1) can be solved numerically more straight-
forward by introducing the function S(y) as was done in the
case of the axisymmetric equilibria.l)

Then we can rewrite Equation (1)

22k _ : 2,22 .,
Ly + T2 Bpp = —S)*{u_(2%+k“r%)p

dB 2kx g
¢+

+ Bd) dw 2‘2+k2r2 (Bq)-B(bl)} r (33)

and

S(¥)

1 if ¥ is inside the plasma

Il

S(y) 0 if y is outside the plasma,

where B¢l is B¢ at the vacuum, and B¢l x B¢o if s is not
large.
For convenience we are going to solve the equation

inside r < a with the boundary condition

2_2
v(a) = - kB¢l a 2 _ uoﬂ . c K, (ka )I'(ka Jcos¢ x I..
c’ - 29 “c 2 555 L ¢’ L% h
/Z +k a,

(34)

The physical interpretation of this boundary condition is like



this. The conducting shell is placed at r = a,- The magnetic
field due to the helical and toroidal coil currents penetrates
fully the shell. But the stream function due to the plasma
and the plasma current is constant on the shell because of
its short life.
We may neglect the effect of the presence of the shell
on the plasma for physical interpretation when we consider
the deformation of the magnetic surface in the plasma, if the
plasma radius is much shorter than the radius of the shell.
Equation (33) was solved by SOR method in (r, ¢) coordi-
nate, and at r = 0 we imposed the condition of Q% = 0.
The mesh-width was reduced automatically by a factg;OZ after
the convergence at each mesh width. The final mesh points
were 40 x 40. We define the plasma boundary in the following
way. If the calculated separatrix is inside the inner radius
of the limiter, S(¢) = 1, if the ¢ is inside the separatrix
and S(y) = 0, if outside. 1In the case that there is no
separatrix or the singular point on the separatrix is outside
the limiter, then, S(y) = 1, if the ¥ is inside the magnetic

surface which just the limiter at 6 = 0.

4. Results and Discussion
As a check of the numerical scheme, the positions of the
hyperbolic singular points calculated numerically by the
method described above, are compared with the theoretical
values. Figure 2 shows the good agreement between two values.
Figure 3 shows the plasma equilibria limited by the

material limiter in the % = 2 stellarator. If the force-free



plasma current is anti-parallel to the Bz magnetic field, the
magnetic surface in the plasma tends to be more eccentric
and vice versa. The calculated dependence of the ratio of
the lengths of the major and minor axes of the magnetic

dB
surface of 2 = 2 plasma near the axis upon the value of ?ﬁ%
islgiven in Fig.4. 1In this calculation, the inner radius of
the limiter was at %ac in order to reduce the effect of the
conducting shell placed at r = a,- We can see that the
iteration method till the first order of (8/R) can give fairly
accurate values. 1In Fig.5 the expansion of the plasma column
by the force-free plasma current in the £ = 3 stellarator is
shown. If the plasma current is parallel to the Bz magnetic
field, the plasma column expands, and vice versa. In this
case, the plasma boundary is limited by the separatrix,
because the separatrix is inside the limiter. The expansion
and shrink of the separatrix of the £ = 3 plasma by the force=
free plasma current, can be well described by the equation
(32), as we can see in Fig.6.

So far we have been dealing with the pressureless plasma
with force-free current. The change of the shape of the
magnetic surface due to the plasma pressure does not occur
significantly till the B of more than 10%. So the effect of
the plasma pressure upon the magnetic surface is quite weak
compared with the case of the toroidal stellarator where the
B larger than 1% or so can give the large effect on the
magnetic surface.

dBW _

So far we had the case of :;—‘— s = const, that is, the

plasma current is quasi-homogeneous, in order to compare the



numerical results with the theoretical prediction. We also

have the convergence of the numerical scheme for the case of
i;%‘= ap + B and awz + BY + vy, where the theoretical analysis
is quite difficult.

The present numerical scheme suffers poor and no con-

vergence at the particular region of the parameter s in the

dBy _

case of —Y = s = const, even when s is not large. The region
of no convergence shrinks as we set the diameter of the
limiter smaller if the plasma boundary are limited by the
limiter. As the diameter of the limiter becomes larger, the
region of no convergence grows wider in the parameter space
and its number of the region increases. Even in the case

dB
of ?;2 = const, equation (1) is a nonlinear equation and it
Y
may have 2 or more solutions at the specific value of s. The

reason of no convergence is now under study.

Conclusion

Diffuse and helical equilibrium of the plasma limited
by the separatrix or the limiter was solved by a finite
difference method as a boundary value problem at the conduct-
ing shell.

In the case of quasi-homogeneous force-free plasma
current where the analytic solutions are known, the shift of
position of the separatrix at & = 3 and the induced eccentric-
ity of the magnetic surfaces of the % = 2 stellarator near
the axis are in good agreement with the theoretical analysis.
For the peaked current profile where the analytical solutions

are unknown, the present numerical scheme shows convergence.
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Fig.4
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Figure Captions

Schematics of the linear stellarator system for the
present study.

The distance of the hyperbolic singular point on the
separatrix to the axis, obtained by the finite
difference method and the analytical one.

Magnetic surfaces of the £ = 2 stellarator calculated

by the finite difference method (a) the wvacuum,
daB

(b) the force-free plasma current, 7ﬁ? = =1.25 m-l.
- - - -1 -
B¢l = 40 kG, I, = 300 kA, k =4 m 7, a, = 30 cm.
Dependence of the ratio of lengths of the major and
dB
Y

minor axes near the axis upon ?ﬁf' The solid line

is equation 27. The triangular point is by SOR.

- = - -1 -
Byy = 40 kG, Iy = 300 kA, k =4 m ~, a_, = 30 cm.

Magnetic surfaces of the % = 3 stellarator calculated

by the finite-difference method. (a) the vacuum

dB, 1
(b) the force-free plasma current v =2.5m 7.
B.. =20KkG, I, = 300 kA, k =4 m L, a_ = 30 cm.

o1 h

The distance from the singular point on the separatrix

to the axis.
— _ _ -1 _
61 20 kG, Ih = 300 ka, k=4 m ~, a 30 ¢cm.

Solid line is equation 32.

B

The cross is the calculated value. The ambiguity

is due to the mesh width.
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Helical coil and shell Limiter

Fig.1
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