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Abstract

A fully ionized plasma is considered. This plasma is
assumed to be cylindrically-symmetric. The plasma is treated in
hydromagnetic approximation, including electric and thermal
conductivities and equipartition time. Separate temperatures
are assigned to the electrons and ions.

External circuits for Iy and Iz currents are taken into ac-
count in order to obtain the magnetic field at the boundary.

The explicit difference scheme is used for solving numerical-
ly the system of six partial differential equations.

Results of the computation are in good agreement with experi-
mental results of ETL-TPE-1l.

Comparison between the computation and snow plow model shows
a good agreement in the B and initial density dependences of the
ion temperature.

Effects of the positive bias field are investigated numeri-
cally for theta pinch. It is found that the positive bias field
suppresses the density concentration and reduces B of the plasma,
and the ion temperature at the center has a peak about the bias

field = 0.8 KG.



[1] Introduction.

Numerical treatments for one-dimensional time-dependent pro-
blems in magnetohydrodynamics are widely used for the interpre-
tation and planning of the experiment of pinch plasma.

Several programs have been set up for this purpose, and, in
general, the comparison between experiment and calculation has
shown a remarkably gobd agreement.(l)(z)(3)(4)(5)

The purpose of this report is to describe the behavior of
the pinch plasma by using the computer program developed in ETL.

Numerical model and assumptions are described in section [2].
They are almost same with those used by Hain and Roberts.

Difference methods are described in sectioh [4] and, in this
program, explicit difference scheme is used for the calculation
of the quantities,'such as the ion temperature, electron
temperature and magnetic field.

In section [6]-(1), numerical results are compared with ex-
perimental results to demonstrate the agreement between the com-
putation and experiment.

In section [6]-(2), numerical results are compared with the
snow plow model and the charactér of the shock heating in the
numerical calculation is discussed.

In section [6]-(3), effects of the positive bias magnetic
field are investigated numerically and its influences on the ion
temperature, electron temperature, density concentration and B8

of the plasma are discussed for the theta pinch.

)



[2] Assumptions and basic equations.

A fully ionized plasma is assumed to fill an infinitely long
cylinder. All quantities are assumed to depend only on the radius,
r. Therefore, only Z and © components of the magnetic field are
allowed. The plasma is assumed to be described as the two fluids
model with quasi-neutrarity, so that the stream velocity of the
ions is equal to that of the electrons. The stream velocity has
only one component in the r-direction.

The transport coefficients, such as the equipartition time be-
tween the ion temperature and the electron temperature, Teq, the
thermal conductivities for the ions and the electrons perpendicular
to the magnetic field, Ky and Kot and the electric resistivity of
the plasma,ﬁ, are considered. However, the ordinary viscosity of
the plasma is neglected. The equipartition time is given by
Spitzer(7) and the thermal conductivities and the resistivity are
given bleragihskii.(G)

Ohmic heating, ej, is confined to the electrons and the shock
heating is confined to the ions.

From these assumptions, hydromagnetic equations are written as

follows:
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n * Nggr Ng, i components of the resistivity tensor,



Ar ; mesh width.
Here, gi is the artificial viscosity term discussed by Richtm-
yersa)’(g) A constant a is of order of one ( In this calculation,
0.9 is used for a ). This term makes it possible to compute con-
tinuously through the shock and conservation laws through the
shock are guaranteed. As implied by the index i, it is assumed
that the shock heating is confined to the ions, whereas the elec-
trons behave adiabatically.

To satisfy the boundary conditions for the magnetic field
self-consistently, the external circuits of the 2 and © banks
are taken into account. They are shown in Figs. 1 and 2, respec-
tively. For the Z-current, the circuit corresponding to a toroi-
dal system is proposed, because this computation is used as an
approximation of the toroidal screw pinch experiment. Therefore,
the major radius of the torus, Rm’ is introduced in order to cal-
culate parameters of the Z-circuit, such as the resistance of the
plasma, inductance of the plasma and inductance of the Z-coil.

It is convenient to express the parameters of the circuits
in MKSA unit and the hydromagnetic equations in Gaussian unit.
Under a suitable normarization, the hydromagnetic equations are
connected with the circuit equations easily.

Egs. (9),(10),(11) and (12) represent the Z-circuit and Egs.

(13),(14) and (15) represent the O-circuit.
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Lce i leakage inductance between the 0-coil and plasma.

Here, I__, Ipz and I, are the currents flowing in the Z-coil,
plasma and ©-coil, respectively. The currents Ipz and Ie are pro-
portional to the © and Z components of the magnetic field at the
and B

wall, B » respectively. ¢ and ¢p6 are total mag-

éwall zwall Pz

netic fluxes of the © and 2z direction in the discharge tube, res-
pectively. Q6 and Qz are electric charges contained in the © and
Z capacitors, respectively. The effective total resistance of

the plasma, Rpi' is defined as follows,

2
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where roall is the radius of the discharge tube. Eq. (16) means
that the macroscopic Joule heating energy, RpiI;z’ is equivalent

to the integral of the microscopic Joule heating energy, nzzji.

[3] Normarization and Lagrangian description of the equations.
For convenience, the equations are normarized by suitable
factors. Normarization factors are listed in Appendix [I].
It is known that the Lagrangian description of the hydro-
magnetic equations improves the numerical stability in the di-

(9)

fference forms. Therefore, Egs. (1)~(7), are transformed from
the Eulerian coordinates, (R, t), to the Lagrangian coordinates,

(x, t). The relations between (R, t) and (x, t) are given by,

d8R_ _ . 1
ax nR [}
3R _
=t -V !
t=t ,

in normarized forms.

Normarized forms of Egs. (l)v(7) written by the Lagrangian
coordinates are listed in Appendix [II].

The transport coefficients and other constants in normarized
forms are listed in Appendix [III].

Normarized equations for the external circuits are written in
Appendix [IV]. In those equations, bee’ bew and bzw correspond

to the currents flowing in the Z-coil, plasma and 0O-coil,



respectively, and bzw and b are the normarized Z and © components

ow
of the magnetic field at the wall, respectively.

[4] Difference scheme for the computation

In order to solve the equations in the central difference
form, the half integral mesh is used for the velocity and the in-
tegral mesh is used for other quantities with respect to space and
time. This method improves the numerical stability of the dif-
ference equationsfg) A

However, the artificial viscosity term in the equation for
veiocity, Eq. (A-2), can not be written in the central difference

form, because~(% g% RV)2 is included in this term, Therefore,

the following iteration for this term is introduced.
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( The index s indicates the number of times of the iteration and,

j and k indicate a certain space and time point, respectively. )

k-1/2 k+1/2.s
For s=0, V. 5+1/2 is substituted for (V. +1/2) and then
( ?Ii;g) is calculated by the equations i), ii), iii) and iv).
k+1/2. s . +1/2
Next, (VJ+1/2) is calculated from (Vk+l/2 by the same way

and so on.
This iteration is repeated only for three times in this program

because the recognizable difference is not observed for s23.

k+1/2 k+1

The values of the Lagrangian space points at t=t and t=t

k+1/2

are obtained from V as follows,

K+1 k+1/2 , Sk+1/2

= ] + At

Xj RJ (VJ+1/2 J 1/2)

K+1/2 _ 1, k+1/2 , k-1/2,
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ﬁere, Rj and Rj+1/2 are the uniform space points and are given
at t=0.
The stability criterion for the explicit difference scheme

of the hydromagnetic equations is given bysg)

Ax '
At < At = (18)
mu 7 2 2
C8 + VA
Here,
2 _ z"Te
C. = ———— ; sound velocity,
s Mi
V2 = - B2 ; Alfven velocity
A anMi d ’
and
Ax = nrAr ; mesh width of the Lagrangian

coordinates.
In the ordinary case, VA is much greater than Cs and Atmu is

written as follows approximately,

= _nrAr n3/2Ar
Atmu Va - 4”Mi ) B .

Because of the low density and strong magnetic field near the wall,
Atmu has the smallest value at the wall. Therefore, it is suf-
ficient to consider Atmu only at the wall and the maximum time

step in the normarized form is written as follows,

N R AR
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Another restriction required for the stability is that the Lagran-
gian space points must not cross each otherfg) When the stability
condition, At < Atmu, is violated or the crossing of the Lagran-
gian space points occures, At/2 is taken as a new time step and

k+1/4 is calculated.

the velocity at the step t=t
When the stability conditions are satisfied, the velocity on
. . . +1/2
the uniform space point Rj+l/2 is calculated from V§+1/2. The

value of j:ifg obtained from Eq.(17) is the value on the Lagran-

. . k+1/2 k+1/2 +1/2 , k+1/2
gian space point xj+1/2. Namely, Vj+l/2 means Vk (Xj+1/2)'

The Lagrangian space points move with the plasma, so that the
space points are rare in regions where the density is low. However,
the magnetic field varies even in the low density regions. More-
over, the boundary condition in which the plasma comes off the
wall is used, ( Section [5] ). This would change the number of
the Lagrangian space points. In order to avoid these difficulties

the velocity on the uniform space points, Vk+1/2(Rj+1/2), is cal-

k+1/2 , k+1/2
j+1/2

By this method, the velocity is always obtained on the uniform

culated from V (X ) at each step by the linear interpolation.

space points at the end of the each step and it is possible to
regard Rj+l/2 as a new position of the Lagrangian space point, xj+l/2
at t=tk+1/2. This scheme is called modified Lagrangian scheme and

is illustrated in Fig.3.

The field quantities, T§+l ' T§+l ’ b§+1 and b§+l are cal-
culated by the explicit difference equations derived from Eq. (A-3)"
k+1

Eq. (A-6) , respectively. The density N is calculated by the diff-

erence equation derived from the equation of the density conservation,

-11-



Eq. (A-1).

A type of those equations is given by,

k k
A, A
k+1l__k, At E+l£2 k k i-1/2 k _k
F. =F.+-—-—-E F, .-F.)~ F.-F,
J J Ax.(Ax. ( J+1 J) Ax’. ( J FJ"I))
Jj "Ti+1/2 j=1/2
k k k
+ At B_F. + At-C’
i3 j . (20)
. . . k _k k
Here, F represents a certain field quantity and, Aj' Bj and Cj
are the functions of V?Ii?% and some field quantities.
The stability condition for Eq. (20) is given byfg)
At < Atmf «
’ 1 - F
= Minimum I % X by —-%———
2383 -1 AL Al : c.
max i+1/2 3-1/2 k | j
AXj4172  B%541.2

If the time step, At, is greater than Atmf, then, At/2 is taken
as a new time step and the calculations for the field quantites
are repeated until the stability conditions is satisfied.

Next, according to the modified Lagrangian scheme, the field

k+1

quantities on the uniform space point, F (Rj), are calculated

from F§+l = prtl (x?*l).
If At is smaller than (2/5)Atm, then, 2At is taken as a new

k+2

time step for the calculation of the next step t=t , where

AtM is given as follows,

AtM = Minimum (Atmf, Atmu).

-12-



Difference equations for the © and Z circuits are written in
Appendix ([V]. 1In those equations, the half integral mesh with
respect to time is used for dg and d,r and the integral mesh is
used for other quantities.

In the explicit difference scheme, it is possible to obtain
k+1 k+1

k+1 _ . . . . ,
¢p9 and ¢pz without any iteration. To prove this, ¢pe is taken
as an example. |
s k+1 ., .
From the definition, Eq.(A-14), ¢p9 is given by,
R k+1 Ryall | k+1
P [ Jmax-1 RAR +./’ b RAR, (21)
pé 0 2 R z
Jmax-1

where Jma indicates the space point at the wall, so that R

b 4 Jmax

does the first space point from the wall.

By the explicit difference equation for bz’/ thé value of b§+l is

means R, and Ry -1

obtained on all space points except the boundary, R=Rwall'

Therefore, the first term of the right hand side of Eq.(21) can
be calculated by the numerical integration. The second term is

approximated to,

R
/;' wall b1;+1 RAR
Jmax-1

AR k+1 k+l
2 [ Rwall‘bzw * Rimax-1" °zJmax-1 ]

"~ .

k+1

Therefore, ¢p8 is given by,

g+l _ gkl k+1

po ZW ’ (22)
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where,

R

k+1 Jmax-1 , k+1 AR o k4l
S =‘£ b, RdR + 2 Jmax-1l szmax—l

and

4

AR
P=—Ria11 .

Substituting Eq. (22) into Eq. (A-15), b::l can be solved as
follows,
qk+l/2
At k 8 _ok+l 13
{(Lpq+1_g==5 Rpglb. ., At—uag—— s + 450 }
b w = (23)
z

At
(lTe + lce + 2 RT9+ P)

The same procedure is applied to the 2 circuit and bgzlis

obtained by the straightforward calculation.

{5] Boundary conditions.

At the center of the discharge tube, the symmetry around r=0

is required and following conditions are imposed;

u=0 ’
aT,
aTe _ T1 — o
or ar !
B orB
Z = e "0
or ar
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No boundary condition is required for the density because the
density is calculated from the conservation of the density around
r=0.

On the wall, the following conditions are assumed;

-0 : at 4= 1 = Ar
i) u=0 ; at j= maxt 7 ¢ Leeer TEr g9t 3

) T, T. ; fixed to the initial values,
e i
m) Bz=Bzwa11'
By=Bowall"
Here, Bzwallﬂand Bewall are obtained from the external cir-

cuits, respectively.

The condition for the velocity, i), means that the flux of
the plasma, %quag—l/z'nwall is introduced at the wall, where,
n_.11 is the plasma density at the wall.

In order to obtain the boundary condition for the density, it
_ is assumed that the plasma interacts with the wall strongly and
is neutralized immediately at the wall. Therefore, the density
is allowed only to decrease at the wall untill it reaches to a

certain minimum value, n_._. Thus, n is given b
" “min ' “wall g Ys

+1 k

. k
hrly = Max. (Min. (nwall’ nwall)' nmin)'

Nyall

where, index k indicates the step t=tk. In the dilute plasma re-
gion which is surrounding the hot dense main plasma column, the.

density and the electron temperature depend on n . and the current

~15-



distribution in the plasma depends on the distribution of the

electron temperature. The value of n is to be determined by

min
the recycling of the plasma on the wall. The intensity of the

plésma flux comming off the wall is also to be determined by it.
However, the mechanism of the recycling of the plasma is very com-
plicated and is not clear. Therefore, it is impossible to deter-
mine the value of Roin selfconsistently. 1In this program, Noin is
given artificially so as to obtain the reasonable electron tem-
perature in the dilute plasma region, comparing with the experi-
mental value.

The boundary condition for the temperatures, jj), is also the
result of the strong interaction between the plasma and wall.
Because the energy exchange between the plasma and wall is suffi-
ciently large under this interaction and the heat capacity of the

wall is much larger than that of the plasma -

[6] Results of computations
(1) Comparison with the experiment.

Numerical results are compared with the experiment of ETL-
TPE-l.(lO) r (11)

Following initial conditions are used for the numerical cal-

culation and experiment.

° initial density, n,. i 1.5 x 1015/cm3

° charging voltage

©-Bank ; 20 kv (B 210 kG)

Zmax

-16-



Z-Bank ; 20 kv (Bemax¢~2.l kG)

° rising time of the magnetic field.

Bz ;2.9 ﬁs

Be : 2.5 us

° gas specy Helium

-e

The initial temperature of the plasma is not measured in the
experiment and it is assumed to be 1 eV in the computation.

Figs. 4 and 5 show the time evolutions of Bzwall and Bewall'
respectively. Reactions of the radial oscillation of the plasma

to B and Bewall are observed in Figs. 4 and 5.

zwall
Fig. 6 shows the time evolution of B, at the center of the
discharge tube, Bzc, and the maximum compression time of the
plasma. The small black circle, *, indicates the experimental
value of Bzc measured by the magnetic probe and the solid line
does the numerical one. The double circle, @, and large black

" circle, ¢, indicate the maximum compression time measured by the
intensity of the bremsstrahlung and the streak photograph, res-
pectively.

The period of the radial oscillation of the plasma and the
value of BZc are in good agreement with experimental results at
the early stage of the discharge. Fig. 7 shows the diamagnetic
signal. The broken line indicates the experimental value and

solid line does the numerical one. The periods of the oscilla-

tion of the numerical value and experimental one show a good

-17-~



égreement at the early stage. However, the magnitude of the
numerical value is greater than the experimental one by a factor
2.5. 1In particular, the difference of the first peak means that
the penetration‘of the magnetic field into the plasma is faster

in the experiment than in the computation. Fig. 8 shows the
radial profiles of B, and By, and Fig. 9 shows the radial profiles
of Te and n,. In Figs. 8 and 9, the values of Bz, BB' Te and n,

are in fairly good agreement with the experimental values.

(2) Comparison with the snow plow model.

As described in section [2], the artificial viscosity is
nessesary for the numerical calculation of the shock by the dif-
ference method, although the physical meaning of the artificial
viscosity is not clear. The ions are heated by the artificial
viscosity in the numerical calculation.

In this section, the artificial viscosity is examined for the
ion heating by comparing the numerical results with the snow plow
model. For simplicity, only the O-pinch is considered.

For the deuterium plasma and rwa11=5 cm, the energy into the
pPlasma by the © discharge is estimated by the following equation

in the snow plow model!lz)

( B/109)
W= 28.2 ev (24)
(nin/lols)l/z

where, n;n and B are the initial density and the rising rate of

the magnetic field, respectively.

-]18-~



When the equipartition time between the ions and electrons is
much longer than the pinch time, the ion temperature is almost
equal to W. On the other hand, when the equipartition time is much
shortér than the pinch time, the ion temperature is same with the
eléctron temperature and is equal to W/2. 1In Fig.10, the n, . depen-

dence of Ticenter is shown. The black circle represents the nume-

rical value and the solid line does the snow plow model. T,
icenter

is the mean value of the ion temperature at the center (r=0) and

is defined as follows,

- _ 1 2
Ticenter T ot, -t // Ticenter dt,

where tl is the first pinch time and t, is the second one.

In Fig.10, T is given approximately as follows,

icenter
= _ 15,-0.6 \
Ticenter = 66 (nin/lo ) eV (25)
In Fig.ll, the P dependence of Ticenter is shown. In this figure
Ticenter is given approximately as follows,
= _ B ,1.2
Ticenter = 9.3 ( 109 ) ev. (26)

In Fig.1l2, the Bmax dependence of T, is shown, where the

icenter
frequency of the O@-circuit, fo, is fixed to constant (f0=86.2 kHz)

and only the charging voltage 1s varied. 1In Fig.l2, Ticenter is

given approximately as follows,

-19~



B
= - max
Ticenter 2.3 ( 3 ) . (27)

Since B is equal to 2nf,B _ , the B dependence of Ticenter’

Eq. (26), is modified as follows,

2nf B
T = 9.3 ( 0 max )1.2

icenter 109

I

4.5 ( max )1.2 (28)

Then, the Bmax dependence of T, » Eq. (27)! is written as

lcenter
follows,
B B
= max 1.2 max ,0.3
= . 2
Ticenter 4.5 (——I;§—) 0.52 (——Iag—) (29)
Comparing Eq. (28) and Eq. (29), it is found that '1‘icenter is

0

essentially dependent on Bm . This Bmax dependence of the ion

.3
ax
temperature is a notable difference between the numerical calcu-

.1ation and the snow plow model.

4

It is shown that Ti is proportional to B;;x in the modified

(13)

snow plow model, in which the adiabatic compression by the mag-

netic field is taken into account after the shock heating. It was

also revorted that Ti was proportional to Bl‘7

nax D the experiment

- _q(11) 1.5 ., .
of ETL-TPE-1 and to EeBmaxOc Bmax in the experiment of Cylar IV
in Los Alamosfl4) The equation (27) is in good agreement with

these results.

From Egs. (25), (26) amnd (27), Eq. (30) is derived.

-20-



(é/lo9)l.2(Bmax/lo3)0.3

T. = 4,85
jicenter (nin / 1015)0.6

(30)

Eq. (30) approximately agrees with the snow plow model over
9 10 14 3

the ranges of B=10710 G/S, nin=5 x 10 N5 x lols/cm and
Bmax=5m25 kG. For Bmax=1° kG, Ticenter is given by
= - : 9,1.2 15 6.6
T center =~ 8-4 (B/107) /’(nin / 1077) (31)
in the numerical calculation and given by
- _ . 9 15,0.5
T: center = 14-1 (B/107) /(n;, /1077) (32)

in the snow plow model. (Ti=Te=W/2 is assumed.) Then, good ag-

reement is obtained.

(3) Effects of the positive bias field.
It is known that the B of the plasma can not exceed a certain
critical value, B_, in the toroidal equilibrium of the high 8

c
tokomak comfigurationsls) However it is difficult to maintain a

stable equilibrium in the experiment of the toroidal screw pinchf;l)
because B exceeds thg critical value by the over concentration of
the plasma density at the center of the discharge tube. It is

known in the experiment that the density concentration is able to.
be controlled by the positive bias magnetic field in the toroidal
direction, Bosll)

In this section, the effect of the bias field is investigated

numerically for the © pinch and the B0 dependences of the ion tem¥

-2]~




perature, density concentration and B are described. The result
obtained from the numerical calculation is, of course, the cylin-
drical one, whereas the experiment is the toroidal one. However,
in the experiment of the large aspect ratio like ETL-TPE-1, the
toroidal effect is sufficiently small for the density concentra-
tion and heating of the plasma at the early stage of the dis-
charge.

Numerical results are shown in Figs. 13 and 14. In Fig. 13
Tic' Tec’ n, and Teqc are the ion temperature, electron tempera-
ture, density and equipartition time at the center of the discharge
tube, respectively. 1In Fig. 14, T}, Te,'ﬁ and Kpm are the mean
ion temperature, mean electron temperature, mean B8 and maximum
kinetic energy of the plasma, respectively, and are defined as

follows, rwall
6 nTirdr

r I
// wall nrdr
0

3|

=]
N

r
, 2 wall n(T.+ ZT rdr
3 = rwall'g 1 e’

(B, 2
and bwall

2
+ Bzwall) / 8m

K = Maximum (K _(t)),
P og<tg3us P
where,
r
11
Kp = 21TMi é’ wall nuzrdr.
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An example of the time evolution of the kinetic energy of the
plasma, KP' is shown in Fig. 15.

Since the maximum value of the magnetic field is near the

th

8 peak of the radial oscillation, the values of Tic' Te , N,

c’ "¢
, Ti' Te and B at that time are shown in Figs. 13 and 14.

Teqc

In Fig. 13, it is found that the bias field is effective on
the suppression of the density concentration. In Fig. 14, the B0
dependence of Kpm shows that the speed of the shock decreases as
B0 increases. However, the effect of the bias field is not so
great on the speed of the shock as on the density concentration
and it is found from Figs. 13 and 14 that the reduction of B by
the bias field is the consequence of the suppression of the den-
sity concentration.

An interesting effect of the bias field appears in the be-

havior of the ion temperature at the center, Ti , and is shown

c
in Fig. 13. Namely, according as the bias field increases, Tic
‘ does not vary monotonously but has a peak about Bd=0.8 kG.
The behavior of Tic is interpreted as the results of following
two effects.
(:) In Fig. 13, it is shown that, for Boasl kG, n, decreases by
a factor 0.5 and Tec decreases by a factor 0.8 in comparison with
the case of B0=0. Therefore, Teqc is relatively long and the only
small portion of the ion energy is transfered to the electrons.
Consequently, Tic is higher than that for B0=0.

This effect does not appear in the region where B, is greater

than 1.8 kG, because Tec is lower than 50 eV and Teqc is shorter



than the pinch time.

(@ 1n Figs. 13 and 14, it is shown that the positive bias field
is more effective on.the suppression of the density concentration
than on the reduction of the shock speed, in the region where Bo
is about 1 kG. Therefore, input energy per unit density increases
at the center as the bias field increases. Consequently, Tic is

relatively higher for Boasl kG than that for Bo=0.
However, in region where B0 is greater than about 1.5 kG,
the reduction of the shock speed by the bias field is dominant

and Tic is lower than the case of no bias field.

[7] Conclusion

A numerical scheme for computing the dynamics of the pinch
plasma is set up in the cylindrical symmetry.

The comparison between the computation and experiment of
ETL-TPE-1 shows a fairly good agreement.

A formula for the estimation of the ion temperature in the
© pinch is obtained from the computation. In this formula, the
ion temperature is proportional to Bl'z/nq‘s. This shows a fair-

in

ly good agreement with the snow plow model. The Bm % dependence

a
of the ion temperature is in good agreement with the experiments
and modified snow plow model, which include the effect of the
adiabatic compression by the magnetic field.

In the © pinch, the concentration of the plasma density by
the hydromagnetic shock is suppressed by applying the positive

bias field. This suppression of the density concentration results
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in the reduction of B of the plasma. Although the mean ion tem-
perature decreases monotonously as the bias field increases, the
ion temperature at the center has a peak about the bias field

= 0.8 kG. This behavior of the ion temperature can be interpreted
as a result of the less concentration of the density at the center.
The effects of the positive bias field for the ion temperature at
the center and B of the plasma are favorable to the confinement of
the toroidal screw pinch, because it is possible to reduce B with-

out lowering the ion temperature.
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FIGURE CAPTIONS
Fig. 1. Current circuit for the Z-current.
LTz i total inductance of the capacitor,
cable and collector plate.

total resistance of the capacitor,

~e

Rrz

cable and collector plate.

L., ; inductance of the Z-coil.

M=ch ; mutual inductance between the Z-coil and plasma.
Lpz i external inductance of the plasma.

c ; capacitance of the Z-bank.

Fig. 2. Current circuit for the O-current.
LTe i total inductance of the capacitor,
cable and collector plate.

total resistance of the capacitor,

~e

Rpg

cable and collector plate.

Cqy ; capacitance of the 0-bank.
Fig. 3. Illustration of the modified Lagrangian scheme.
Fig. 4. Time evolution of Bzwall'
Fig. 5. Time evolution of B

Bwall®

Fig. 6. Time evolution of Bz at r=0 and the maximum compression
times.

Fig. 7. Diamagnetic signal of the plasma.

Fig. 8. Radial profiles of Bz and Be.

Fig. 9. Radial profiles of the electron temperature and

electron density.



Fig. 10. n, dependence of T,

icenter”’
B = 10 kG
max
B = 5.46 x 10° G/S
Fig. 11. B dependence of Ticenter’
Bmax = 10 kG
_..15, 3
n,, = 1077 /cm
Fig. 12. Bmax dependence of Ticenter'
fO = 86.2 kHz
_ 15 3
n, = 107" /cm

Fig. 13. Bias dependences of the density, ion temperature,
electron temperature and equipartition time at r=0.

Fig. 14. Bias dependences of the mean ion temperature, mean
electron temperature, mean B value and maximum kinetic
energy 'of the plasma in the discharge tube.

Fig. 15. Time evolution of the kinetic energy of the plasma in
the discharge tube.

In Figs. 13, 14 and 15, following parameters are used.

rwall ; 5 om
Bmax ; 10 kG ( Ve = 20 k volt )
B : 5.46 x 10° G/S
15 3
n, o ; 1077 /cm
Gas ; deuterium

Initial temperature of the plasma

: 1 ev
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Appendix I

Normarization factors.

For magnetohydrodynamic equations;

For Z

density

length (radius)

time

velocity

magnetic field

temperature

-circuit;

current

inductance
flux

charge
capacitance

resistance

For theta~circuit;

*

current
inductance
flux

charge

capacitance

resistance

= *
L1022l 3a11B5 Mo

= *2
Loz""0¥6“/ Toal1

= *2n*

@02 21rr0 B0 |
= *

Qy,=2" 0411880 Mo
_ 2 2

Coz=Twa11t9/ (Mo¥§")

o w2
Roz=H0T5 "/ (rha11to)

- *R%*
I 21rRmBo/u0

06
Loe=HoT§>/Rh
@oe=2ﬂr62B6
Qoe=2"RpBote Mo
Coe=REt3/ (uors?)
Rog=HoT§2/ (RAt)

1015/cm3 n=n0N
lcm r=roR
10 %sec t=t t
106 cm/sec u=v,v
10_3 gauss B=B0b

1.60206 x 10-12 erg

T=T,T

* =
Iez IOzbee

I* b

pZ=IOZ

,L*=L021
* =
¢pz QOz¢

Q;'-"Qquz

ow

pz

=
cz COzcz

T
R ROZR

d=
Ie IOebzw

*=
L Loel

*pe=200%p0
Q5=

*=
C5=C06 0

=
R RoeR

indicates that the values are expressed in MKSA unit.

Other values are expressed in Gaussian unit.

(r

3 = 0.0l m, B

Ap.-1

0.1 wb/m2, Mo = 4T x 107 )

0



Appendix 1II
Normarized hydromagnetic equations.

‘9N > _
>t + Ndivv =20
BV _c R-2_N(ZT_+T;+q;) -CoR—b2-2C,b Rb
ot 17 5% e riTai) T2 3Pz 2¥p3x 0
2T, _ 2 D OTe,— -1
=55 = (1) T div ViSoKke 5265 (TeTi) teq
QT . P T, -1
— = - - : . -+ . - » - .
— (Y-1) (Ti+q;)div Vezo— By —53t -2 (Ti-To) -ty
3b 2 % °ob = D . =2
—_—Z = (. —le - C -
52 = N3 ee3x° ~ oz 5x T0g) ~ P24V V
aba _ o - S = 3 by oV
2t NRax (']zz ox Rbe y)ez oX ) - NRbe X

div V = N—2— RV
w V=3

Ap.-2

A-6

A-7



Appendix III

Normarized forms of the transport coefficients and other

constants.

Nmesh i number of mesh points.
Ryal1™ Twa11’/ %o
AR = RWall/ Nmesh
mA = Mi + Zme

_ 2
Cy = Tg / (xgmy)

_ 2
C2 = B0 / (8nmAV0n0)
9; =9, (div ¥ - 1div V| ) div V

= m_v2(aARr) 2/ (27.) a=0.9
99 A'0 o'’ .

b b

= _ = zZ,2_,- Zy (3 = (2 2
€3 = €olnge (53) “~2Mg, (53 (X Rbg)+7,, (2 Rb,) 2}

€n = (y-1) Bg /(4nnoTOZ)

2.2 /o2 /
N'R Te (Yl*e +YO)te/Ae

=i
I

e KeO
- _ 2
Keg = (vy-1) TO/(meVO)

_— 2.2 2

2

2m

t = --_-_e... ._.];_.
eq m, te

A =n, - (1+5n-t-)—§-)
2z 0 te b2

b,b

- 1 0" 2

n ==N,-—0n —==R
0z 0 te : b2

Apo-3



'bz 2
Ngg = Mg £ (1*+én—3) R
e 2 'b
. odxT+a
§n = 1 (1 17e O) -1
a A
0 e
A = x4 + 6 x2 + 6§
e e 1
xe = xOe bt
Xoe = eBoto/(mec)
by = vi+2.70y%+0.677
y = yobti
Yo = ZeB to/(cM )
b = (b + b 1/2
r3/2
te = Te/tO = te0 NlnA
3-/" T, 3/2
t =
e0 av2m %z noto
Ti3/2
t; = T3/t = Y50 NImA
amg T, 3/2
tio T
4/—é Z n0 0
Y3m cT,
1nA = 1n = 3 - 1.5 1nz + 1nT_ - 0.5 1nN
137/7e JHB :
3p 3/2 for Te 2 50 eV
= 1n —— - 1.5 1InZ2 + 1.5 lnTe -0.5 1nN
2v/me Jﬁg
for T < 50 eV
e
The values of the constants Y ai, qé, yi, Yé, Gi and 66
are given by Braglnskll(s)

Ap.-4



Appendix IV
Normarized forms of the circuit equations,

For Z~circuit (Bewall) :

ydbge Iz ow _ _
(1T2+1cz) at * Rsz6e+cz 1cz a - 9. (A-8)
dbe Be B¢
lpz dt Rplbew 1cz at ’ at =0 ( a-9 )
dqz ,
—3t = Pee. ( A-10 )
R
g = _Sm fwally o ( A-11 )
P2z r 6 . :
0 0
mn
_ wall zz QR] 2
Rpi - pO b2 /( (3rRPg) “aR.
R =9 x 10ll. _47Rpzf
po c2r2 t
. : wall™-o :
For O-circuit (Bzwall) ;
db q g
zZw 6 pe_ _ -
Qpe*leg)—gE — + Rpgby, * g, T Tet =0 ( a-12 )
dqe
= b
dt ZW . ( A-13 )
Rwall
B0 ={ b_RAR. ( A-14 )

Ap.-5



Appendix V
The difference equations for theta and Z circuits.

For theta circuit;

k+l_ k k+l,, k
vr(l +1 6)(b zw)+——RTe(b zw)
qk+l/2
) k+1 k
= A-
+tAt————— < +(¢ ¢P9) 0) ( 15)
k+1/2 _ k-1/2 _ k -
For Z circuit ; k+1/2
k+1 LK k+1l .k
(1 +1cz) (b )+—RTZ (b +be )+At z
k+1 . k _
- lcz(bzw b, =0 ’ (2-17)
k+1 k At_k k+l k k+1 . k
1z (Poy Do) *3 Ry (bgy ~+bg ) =1 (bg “~bg )
k+1 k
- - =0 A~
(Bpy Bz , ( A-18 )
( A-19)

k+1/2 k-1/2 k
9, 2 - 9, /2 - At by,
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