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Abstract

It is theoretically predicted that a MHD instability is
induced by the strong ion beam injection perpendicularly into
the plasma column. Its growth rate is of order kCA, where CA
is the Alfven velocity and k is the wave number along the

magnetic field.



1. Introduction

Plasma heating by beam injection [1] gives us a hope to
have a toroidal plasma in which the fusion.ignition condition
is satisfied. The technology which supports this Heating method
is wonderfully progressing to a higher state with some important
discoveries [2] to produce the intense ion beam. From the point
of view of creating the intense neutral particles for neutral
beam heating, the cross section of the charge transfer becomes
extremely small, when the energy of ions in the charge
neutralizer attains of order 50 keV ~ 1 MeV. This suggests
that the ratio Q, of the fusion power released to the power
required to produce the neutral beam for the injection becomes
extremely small. Since the fusion reactors will, by definition,
use nuclear fusion events as their source of power, a better
reactor should be not only to maximize the rate of fusion
reaction by choosing the energy range of the reacting particles
but also to minimize the necessary power required to attain the
fuel plasma in a self-heated state. As an alternative to the
energetic neutral beam injection, the high energy ion beam should
be injected directly into a fuel plasma without passing through
a neutralizer. 1In this case the electrons should be supplied
to satisfy the charge neutrality in the plasma. Then after
a few slowing down time of the ion beam its energy decreases to
a certain value where the cross section of the fusion reaction
is maximum.

When both the energy and the current of the injected ion

beam become high enough, the effect of the poloidal current of



the beam on the toroidal field should be taken into account to
analyse the MHD stability of the plasma column. This situation is
very similar to the problem which occurs in the infinitely

long Ion-layer in the plasma without field reversal. This

type of the combined ion beam/background plasma syétem has
recently been considered by some authors [3].

The purpose of the present investigation is to see the
condition for the hydrodynamic instability of the plasma column
with an rotating ion beam. The plasma column with an embedded
ion beam which rotates around the axis of the plasma column can
be thought of as a model of the equilibrium state of the toroidal
plasma characterized by a marked non-Maxwellian ion velocity
distribution such as might be produced by the transverse injec-
tion of a strong current ion beam into a thermal plasma.

In the present analysis the assumption is made that the
background plasma is a cold, perfect MHD fluid in which a cold,
charge-neutralized ion beam rotates. In Sec.2 we consider the
equilibrium state, and in Sec.3 we present the simultaneous
equations for the perturbed quantities. The set of equations
is reduced into a single differential equation in Sec.4, and
the dispersion relations are exhibited in Sec.5. In order to
afford an insight into the MHD instability induced by the ion
beam the dispersion relations are approximately solved in
Sec.6 and it is shown that the perpendicular injection of the

ion beam has a tendency to make the system unstable.



2. Equilibrium

The geometry of the plasma column with an embedded ion
beam rotating around the axis of symméﬁry is shown in Fig.1,
where the cylindrical coordinate system is used and the rotat-—
ing ion beam is assumed to be é infinitely long column with
radius a. A cold, dense plasma 6f uhiform mass density p fills
the metal cylinder to the wall whose radius is d.. The macro-
scopic flow velocity and the current in the backgound plasma

are assumed to be vanished in the equilibrium. Then the

structure of the magnetic field in equilibrium is determined by

-y B, = ne’u, r (1)
B dr M
z
and Be = Br =0 ,

where B = E(Br, Be, Bz) and e, M and n are the charge, the mass
and the density of the ion beam. The quantity u, is the

magnetic permeability of vacuum.
In the case of the ion beam density to be uniform, the magnetic

field in the equilibrium becomes

2
ne- " yo r2)

Bz = By exp( M ’ 0 <r < a,
(2)
HGZUO 2
= By exp(—~5ﬁ— a‘) , a<rc<d,

where By is the strength of the magnetic field on the z axis.



3. Equations for Linearized Quantities

The linearized equations describing the cold background

plasma, the field and the ion cloud are

aﬁ > >
P3E = Jp X Bg ’ (3)
E+uxByg=0 , A (4)
> > >
V x B = Uo(Jp + Jy0) . (5)
->
oB
SEr VX E =0, (6)
B_) - > > <> > >
MEVL 4 Tyevvy 4 viTvo) = e+ To x By 4+ Vi x Bo), ()
on -> -
_B—EI_ + V. (nov, + nlvo) =0 ’ (8)

where U and v are the velocities of the plasma and the ion beam
respectively, and E and n are the electric field and the density
of ion cloud, and jp and jb are the current densities of plasma
and beam, respectively. The suffixes 0 and 1 mean the unperturbed

and the linealized quantities respectively.

From Eqg. (3) we immediately have
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Therefore, 30'3 0, provided it vanishes initially. Then,

from Eqg. (4)
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It is convenient to introduce the vector potential A with gauge

chosen such that

> ->
B, =V x A
and
->
B = - 93
E = ot
Then from Egs. (3), (5) and (10) we have
By, xIT =0 |, (11)
where
> HopP BZK - > ->
I=(—o'—)-'——'+VXVXA-UQ\T . (12)

Bp? ot?

In order to solve the differential equation with respect to R
the perturbed current density jb of ion beam must be obtained.
The guantity 3b can be calculated in principle by Egs. (7) and
(8) for the general configuration of the ion beam. In the
present analysis we consider the case of having a cylindrical
symmetry, and equilibrium quantitites are functions of the
distance r from the axis of the cylinder. Taking advantage of
the symmetry of the undisturbed system to Fourier-analyse the

perturbed quantities we write
f=f(r, m, klexpi (m8 + kz - wt) |, (13)

where f represents the perturbed quantity, and m and k are the
mode number and the wave number respectively. By using Eqg. (4)
we have

>

>
E*By = 0 . (14)

This means that the z component of the vector potential is

vanished in the cylindrical ion beam considered here, i.e.



> >
A = A(Ar, Ae, 0) . (15)

From (11) and (12) we see that the problem to be solved at
present is reduced to a dual simultaneous partial differential
equation. In order to solve the equation we must, at first,

calculate the linearized current density of ion beam. The

componenets of the perturbed velocity are

dA

_ e _ Y s (°)
V. = " 2[w(w mSZ)Ar 21wS2A6 1er 757] , (16)
w-9Q
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And the perturbed density becomes
; 2
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where dn and dB are defined by
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4. Reduction to an Ordinary Differential Equations

We now wish to rewrite (11) in dimensionless form' except

the vector potential. We define dimensionless radius x:
r = ax . (20)

We introduce dimensionless parameters & , K and A as follows.

~ 2 _ .2 2,2
® w/Q, A w pba /c
and ' (21)
2
K2%= (62; - kz)a2 ’
A
2 _ 2 2 _ p2
where wpb = ne‘/e¢ M , ca Bzo/qu.

Then the r component of Eq. (11) becomes

2 (5=
(- ke - g2 Sl
b'e wc -1
- da 2~
= —i{(B ez 0y 0, (@™, 2258,y (22)
dx ~ 6
x2 n2-1 x? 02-1

The 6 component becomes more complicated than the r

component given above, i.e.
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where k2 = kZa’.
In order to pick out the decisive terms in (22) and (23) on
the stability we introduce an ordering in a -small quantity.

In the present investigation we define the small quantity.
e = w/(eBy/M) << 1 . (24)

And it is found that the consistent scheme which is suitable

for the problem of interest is

0 v 0(e) .

A.K, K,wa/cy nO(e2/2) . (25)

Then, since the differential equation reduced from Egs. (22) and
(23) are different between the case of m=0 and the case of m#0,
these are treated in the separate subsections.
A. Case of m#0

In this case the ratio Ar/Ae is of order unity. By
dropping terms of order ¢?2 we have a single differential equation

with respect to Ae. Inside of the beam

2 A
A" Aq 3 K2 p2a2x? g
+ {=+ ZX(? - )}
dax? X K2c,? dx
A
242 2 242
) m2 chAz
242 '
s 1-m+EXa-O1r L g =0 . (26-a)
K2 w Xz

Outside of the beam there is a perfect MHD plasma whose governing
equation can be obtained by letting A - 0 in Eq. (26-a). We

introduce the quantities V¥ and p in place of Ae and x, i.e.



2 2 2 2
m K cA
and
K2 w2a?)?
p = x?( - —) ,
m K cA

whereupon we obtain the equation for y

2 2
dp p
where 202
A%k 2.2+2
— 2? aZA + 5 (m2-2)
y = mw K ca
K? w?a?)?
4(52— )
K2c, 2
A
and 242
M2=%{ki\ (1 - =) - (m*-1)} .
K

Eq. (26~-b) has exactly the same form of the schrddinger equation
with respect to the motion of charged particle in a Coulomb
field.
B. Case of m=0.

In this case the ratio Ar/Ae becomes of order €. And the

reduced equation is

d2a da
RN ISR
dx
242 b2
+ {(A k + K2 - 4)2) - i% + MK x2} A, =0 .
0?2 0?2
(27-a)

Eq. (27-a) is also reduced to a well-known form which appears in

the quantum mechanics. Here, the quantities Y and p are introduced

by



A, =Y¥Yx exp(A?x?)

0
and
42
o = x2( - 2 KZy1/2
(1')2
whereupon we have
2
b, 2, l-hy =0 ,
apz P de o
252 (27-b)
lv§_ + K2
where r = W T
4= 2%/

The equation which governs outside of the beam is reduced to

the well-known Bessel's form by letting A » 0 in Eq.(27-a).

5. Dispersion Relations

By solving Egs.(26) and (27) inside and outside of the
beam and joining with the appropriate boundary conditions we
have the dispersion relations. At x=1 the following boundary

conditions should be satisfied.

1) By, = Bgp v
(28)
aa aa
.. op  _ 6b
i) =3~ = —ax '

where the suffixes p and b correspond to the outer and the inner
solutions respectively.

And also at x=d/a5xw

’

Aep =0 . (29)



A. Case of m#0

Inside of the beam (i.e. |x| < 1) the solution of Eq. (26-a)

is found to be

Bgp = C1 0exp(-p)F(1 + g - Y ; 2q + 2;p )

where

q = % [ -1 + /1 - aMm?]

and F(s,t,z) is the confluent hypergeometric function defined by

s(s+1) 2% | ...

= s z | s(s+l) z°
Fls.ty2) = 1+ ¢ 97 + TierD) 37 .

(31)

Outside of the beam the parameter g is displaced by q', where

q' = %(-1+|m[). Thus, the solution of (26-a) in the plasma
region becomes
1
Aep = p% exp(-p) [C,F(1 + q'-y; 1 + |m| ; p)

*
+ Cs{F(1+q'-y; 1+|m|:p)%np + F (l+q'-y; 1+|m|;p)}1,

(32)
where
F*(sjt;z)= (-1) S (t-1)1 822 (-1)"(t-n-2)1 1Tt
u=0 (s-1) (s=2)----(s~t+n+l)
soeeny g Sterlleve(etnel P 1 1 1, 0a
n=0 (t+n-1)!n! r=g St1 t+r 1+l

(33)
and C, and C; are costants.
In order to obtain a simplified dispersion relation an assumtion
is made that the ratio d/a is sufficiently large. From both
this assumption and the condition (29) we have

C;3 =0 . (34)

- 11 -



By using the equality (34) and the boundary conditions (28) the

dispersion relation becomes

(q-B) +'l+q—Y A F(2+q-Yy; 29+3; A)

2(1+Q@) " F(1l+q-y; 2q+2; A)
. K2 -
F(2+gq'-7Y; 2+[ml; —)
= (q' - Ki) 4 lra’-y K? m®
mz l+|m[ m2 ‘ Kz
F(l1+q'-y; 1+|m}; =) .,
2
(35)
2 2242
where A= L wra Ao .
m?  K2C,?

B. Case of m=0.

Inside of the beam the solution of Eg. (27-a) becomes

= 2,2 _ P - T 2
Aoy = C; x exp(A<x 2)F(l T'; 2;0), (37)

where F is also the confluent hypergeometric function defined
by (31). Outside of the beam Eq. (27-a) reduces to the well-
known Bessel's differential equation. And by using the require-

ment (29) the solution becomes

A, = Cp{J:(Kx) - J-’—(Kiﬁd;— Ny (Kx )} . (38)

ep N1(wa

For X, > ® the dispersion relation becomes

*
F(1-T;3;A )
F(1-T;2;A%)

K Jo(K) _ 2 _ g2 /21 - (14T)
J, (K) 2(1+2%) + | ~2 )

]

(39)

where A = (-

- 12 -



6. Analysis of the Dispersion relations

To afford an insight into the MHD instability induced by
the strong current ion beam, the dominant terms are carefully

picked from the dispersion relations (35) and (38).

A Case of m#0

The dominant terms of the dispersion relation (35) is

f2,.1/2 w 1/2
o) %87+ (22 - 112, (40)
kCA kCA
where )
- k.CA A
mQ °

It should be noted that the parameter £ is a small quantity

rewritten by
w a
g = @Y (R ka | (40)

where N is the density of back ground plasma ion. And it is
clear that there is no real root in Eq. (39) so long as the
parameter § is small but finite. To the accuracy of 6rder El/a

the solution of Eq. (39) becomes
-3 '3 . (40)

Therefore, the intense ion beam contrinutes to the helical

overstability.

B Case of m=0

The dominant terms of the dispersion relation (39) is

~ A E
2 - 4
W+ —— = 0 - ( 1 )



Then, the solution of Eq.(4i) can be written by

(42)

which implies instability.

7. Discussions

The above analysis could be utilized in predicting the
possible M.H.D. instability which might be induced by the perpen-
dicular injection of the intense ion beam in the plasma column.
In the case of the beam injection into a toroidal system the
pbeam should have a little toroidal velocity and there is a weak
poloidal magnetic field, Be, in the equilibrium configuration.
This case can be analysed without difficulty by making a small

revision of the basic Eq. (12). The quantity I should be displaced

> %
by I , where
ok 23
7% _ W0 3%A L g x g x R -V x K- ued cees(12)
Bo 3t 2 b
and N N
Wod_ By
o = PO
> >
By By

Be r de 1/2
However, when (§~)/(§— 75?) is less than the order of € , the
z

Z

result obtained in the present analysis is valid, even if the
poloidal field Be is present in the equilibrium configuration.
In the case of the torus having an appreciable poloidal field

the plasma column (e.g. tokamak plasma) must be analyzed by

taking the z component of the vector potential (15) into account.



So long as the perpendicular injection of the ion beam is con-

N dB
cerned the effect of the field gradient éi ?ﬁ? could not be

z

neglected. This situation is very different from the case of
the stability of the field reversed ion ring/layer where
dB
-z
dr

Thus, the result obtained here is not trivial. Unfortunately,

-

=0 [3].

however, the perpendicular injection of the strong current ion
beam has a tendency to make the system unstable. A toroidal
effect and the appreciable poloidal field may have a potentiality

to stabilize the instability predicted in this paper.



(1]

[2]

[3]

REFERENCES

DAWSON, J.M., FURTH, H.P., TENNEY, F.H., Phys. Rev. Lett.

26 (1974) 1156.

SUDAN, R.N., LOVELACE, R.V., Phys. Rev. Lett. 31 '(1973) 1174;
HUMPHRIES, S., LEE, J.J., SUDAN, R.N., J. Appl. Phys. 46
(1975) 187; CREEDON, J.M., SMITH, I.D., PRONO, D.S.,

Phys. Rev. Lett. 35 (1975) 91; IKUTA, K., MOHRI, A.,

MASUZAKI, M., Japan. J. Appl. Phys. 14 (1975) 1569.

IKUTA, K., IPPJ-190 of Institute of Plasma Physics,
Nagoya University; LOVELACE, R.V., Phys. Rev. Lett. 35
(1975) 162; SUDAN, R.N., ROSENBLUTH, M.N., Phys. Rev. Lett.

36 (1976) 972.



Figure Caption

Geometry



AMAIN

Beam+Plasma

Plasma
Metal Wall
Bz Coail



