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Abstract

Based upon the model equations of quasilinear type, the
nonlinear behaviour of the collisional drift instability is
studied from a point of view of diséipative structure. It is
shown that near marginal stability the drift mode is saturated
to a nonlinearly stable state. As the ion viscosity decreases,
bifurcation of nonlinear steady state occurs and no stable
steady state is possible. The limit cycle appears instead of

stationary solution. Particle transport is also estimated.



we here study the nonlinear development of the collisional
drift instability, which occurs in the collisional regime of
a magnetically confined plasma. Several worksl.-_3 have been
done on this problem. Monticello and‘Simon3 showed that the
modification of the background density by the zero-frequency
harmonic is the primary mechanism for saturation of the
instability. Their treatment is mainly concerned with a steadily
oscillating drift mode near marginal stability. We treat,
from a point of view of dissipative structure4, wider class
of nonlinear problems such as the stability of nonlinear steady
state itself and the transitions to higher instabilities
besides saturation near marginal stability. Our asymptotic
expansion scheme differs from those in the previous worksz'3.
We consider the conditions for electrostatic perturbation with
the frequency w and the wave numbers k,, k,; klzai2'<< 1,
Q, >> vy >> ws k"ZDc“/w* >> 1, where a; is the mean ion
gyroradius ai=vTi/Qi, Qa the cyclotron frequency of respective
species, vei the electron-ion collision frequency, w, the
electron diamagnetic frequency and DC" the classical diffusion
coefficient along magnetic field, DC"= 1.96 Te/mevei for the

jons with unit charge. Under these conditions, the linear

analysis5 gives the frequency w and the growth rate Yy, as

w=w,/{1+ (140 b}, v =v,(w-w) /K, D (1)
- _ 1 2_ 2
where A= Te/Ti and b = 5 k, a,® .

We start from the two fluid equations. After some procedure3,

we obtain the coupled equations for the density n=n_=n, and the



electrostatic potential ¢
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where Te,i are supposed to be constants. Dc; is the classical
diffusion coefficient, Dc1=(Te+Ti) \)ei/mefze2 o T is the ion
viscosity part of the stress tensor and 1II FLR is the finite ion
gyroradius one, a —(c/B )BXW¢, and u ~--—(T /m Q. )(§X$n)/Bn.
The sources Qe,i are introduced only to ascertain equilibrium.
We apply these equations to a slab model with the
unperturbed density N(x)=N, (1+kx) distributed in 0<x<4% and the
uniform magnetic field B=BZ. The unperturbed potenfial is ‘

taken to be zero for brevity. We choose as a smallness

parameter e€Z|k|% and intorduce the ordering scheme;

w/Qi ~ w*/Qi ~ 0(e) , kyl ~ 0(1),

2 2 2
kn Dc"/w* ~ 0(1/¢), ky Dc;/w* ~ 0(e) and vii/ﬂi ~ 0(e%) ,

(1) (2) (1) (2)
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where p=n/N(x) (n=N+n), w2e¢/Te, and 3g is the group velocity
to be determined in third order calculation. By this ordering,
Egs. (2) and (3) can be expanded in a systematic"wayﬁ. Since
calculation is rather lengthy, we will omit it here and quote
only the results necessary for present ‘arguments.

To the first order in e, Eq. (2) is reduced to Dcn(n=No)82/az2

(p(l)—w(l))=0, then we may write

(1)

P = w‘l’

= h(x,t23e?t)+ I f(x,tz)ei(kyy°+k"z"wt1)
knrky
(4)

r

where h is the modulation of the background density, £ the
amplitude of the drift wave. Note that w is taken to be
real in this paper. In the second order €?, we find the dis-
persion relation for w and the phase shift between p(z) and
w(2) which is proportional to Yy, in Eq.(l1). The nonlinear
equations for h and f are obtained from the third order calcula-

tions, which after some simplifications are expressed in

dimensionless form as

2 Y

%% = (o 9~ _ n 3 )H + Zg%(FAF), (5)
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where we set H=(n/|k|%)h, F=(n/|k|2) £, E=wx/%, k=ky2/ﬂ,
= a2 2. k2 = 2 s .

A=32/3¢82-k°, T th/k and o 1s proportional to Dc; '
a=ky2Dc;/YL and n corresponds to viscosity damping,

= 2_ 4 =
n—(3/10)ViiA(kyﬂ/2) a; /4y En, /Yy -



These equations are of quasi-linear type, and will describe
well the nonlinear behaviour of the drift wave. Without loss
of generality, ﬁe hereafter may fix k, and ky values. In
experiments, k, is usually specified by the length of device
or by the configuration of the magnetic field7 and ky takes
a discrete value since the y direction corresponds to the 8
direction of plasma column.

We now require the fixed boundary conditions at x=0, %.
Egs. (5) and (6) can easily be solved by decomposing F and H
into the Fourier components

F= I F_sin(pf) and H= I H_ sin(pg). (7)
p P p P

The model egs.(5) and (6) can be transformed into the form

d = -
'a"? Hp - FpHp + . Z K ] ||F |F (1] r (8)

P =y F_ -

d
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where rp=ap2+np“ and Ypé{l-n(P2+kz)}(Pz+k2) and with the
Kronecker § =P (p" 2+k?2) (-6 +§

6 Il)
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Based upon (8) and (9) we obtain the following results for
successive transitions to higher instabilities

(1) The equilibrium: if‘n>ncsl/(l+k2). there is no unstable
mode, namely the steady state with Fp=Hp=0 is stable, which
is indicated by the notation S[0].

(2) The first stage: if nc>n>n151/(4+k2), one mode F; become

unstable associated with the back ground modulation H,.



This stage is described by a simple set of the equations of

two mode coupling,

dinz = = T,H, - 2(1 + k2)F,2 , (10)
T
—dd?F]_ = v,F; + (1 + kz)HzF]_ o (11)

Then we have the steady state, S[1l], with the saturation levels,

Fis = #{(n_ -m/vZ}'/* , Hag = n/n -1 . (12)

It is easy to confirm the nonlinear stability of this state.
The state S[1l] has a kind of dissipative structure4. In the
moving frame with velocity V* =yTe|K|/me9e  convective
pattern for the ion fluid velocity is traced analogous to
particle trapping in phase space, while the electrons show
almost no convection. The saturation mechanism is mathematically
made clear by the flow pattern as shown in Fig.l.

The enhanced diffusion coefficient is estimated from (12)

to be
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(13)
(3) The second stage: if n:>n>1/(9+k?), two modes, F; and
F,, become unstable, associated with H; and H,. We denote the
new steady state with the finite amplitudes of Fl'z and Hl'z
by S[2]. The steady state S[0] and S[l] remain to be the
solutions in this stage. We find the bifurcation of the steady

state.



It is interesting to see that all the S[0], S[1] and S[2] become
unstable. Numerical computation shows that the trajectories

of the solutions tend to a time-dependent asymptotic state,

or in mathematical word limit-cycle around the S[1l], as shown
in Fig.2.

(4) In the case whére n<<l: there exist many unstable modes.
One cannot obtain the stationary profile of the background
density and expects that the time-averaged asymptotic profile
except in the boundary regions is a plateau, which is of

course the solution of Egs.(5) and (6). In both the ends of
the slab, however, the steady "boundary layers" appear, of
which the width is estimated to be £/ by the critical wave
number kc making the growth rate Yp vanish. In the plateau
regime the drift waves carry most of the particle flux, but

on the contrary in the boundary layers the classical transport
is dominant over the wave transport. Therefore, the asymptotic
value of the particle flux can be estimated to be the classical
flux times (&/2 - /M) /2v/n, the ratio of the density gradient
in the boundary layer to the unperturbed value Nolx|. fThe
effective diffusion coefficient is thus found to be of the
order of

D, v D, /2/7 . (14)
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Figure Captions

Fig.l The flow pattern of the dynamiqal system (10) and (11)
is (c) the flow with two spiral attracters S{1] and one
saddle point S[0] which is the superposition of (a) the
cusp type flow corresponding the linear part and (b)
the circulation type one with sinks and sorces represent-
ing the nonlinearity. The length of the arrows is pro-
portional to the magnitude of the flow velocity.

Fig.2 Trajectories in (H,, F,) and (H,, F,) spaces of a numerical
solution in the second stage. They start from points
near the equilibrium S[0]. The trajectory (H,, F,) space
first approaches S[1], goes away spirally and asymptot-
ically forms a limit cycle around S{1l]. In (H,, F,)
space, the trajectory grows monotonously to a limit qycle.
The period of the cycle in (H,, Fz) space is twice the

one in (Hz, Fi).
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