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Synopsis

A nonlinear theory of the collisional drift instability
is developed in a slab model based on the two fluid equations
where the ion inertia, finite gyroradius and viscosity are
included. A systematic expansion is introduced by taking
e=|k|% as a smallness parameter where k is the degree of
density gradient and % is the 1linear scale of the slab
along the density gradient. A set of the model equations
is derived, which can describe the nonlinear evolution of

the drift wave.



§1. Introduction

Nonlinear theory of unstable waves is one of the most
important problems in the fundamental plasma physics, as well as
in plasma confinement studies. It is generally believed that
fluctuations due to instabilities play a significant role
in the enhancement of plasma transport. Among various modes
one of the most important modes with respect to the transport is
the drift mode which occurs in the presence of the spatial
gradient of density and/or of temperature of magnetically confined
plasma. Recent experimental results of stellarator devicel)
have shown that in the collisional regime the plasma is subject
to the large amplitude oscillations of the collisional drift
mode rather than to fluctuations, and usually a few unstable
modes dominate. The observed particle losses are interpreted to
be mainly due to the collisional drift instability. It is there-
fore necessary to treat nonlinear saturation near marginal
stability and transition to the states with several unstable
modes, and the consequent anomalous transport. The purpose
of this paper is to present a methbd of asymptotic expansion
for nonlinear unstable collisional drift wave in order to make
these problems tractable.

Nonlinear analysis of the drift instability in the fully
3)

ionized collisional regime was carried out first by Stix™", and
by Hinton and Horton4). Subsequently, Monticello and Simon5)
performed a self-consistent calculation which includes the

effect of both the zero-frequency harmonic and the radial

derivatives. They have found that the modification of the



background density by the zero-frequency harmonic is the primary
mechanism for saturation of the isntability, which was omitted
hitherto. Their treatment, however, is mostly concerned with

a steadily oscillating drift mode above a critical magnetic

field. Recently, Satos)

has presented a numerical work for

this instability. Although the wide range of physical parameters
is treated in his work, the ion inertia terms and stress tensor
is neglected.

We here have interests in the following parameter range of

a low beta plasma; k,%a;? <<'1, @ >> v  >> w, kv

[0 a Ta(a=e'l)

where w is the frequency of a drift wave, k, and k, are the
components  of its wave vector perpendicular to and parallel to the
magnetic field, respectively, a, is the mean ion gyroradius,
and‘Qa the cyclotron frequency for the respective species, v,

the collision frequency, and v

T /2Tu/ma . And also

Wye2W>>yp =0y (yrw) v SRV 2, (1.1)

where w, is the electron diamagnetic frequency and YL is the
linear growth rate. Therefore, we use the two fluid description
and consider the electrostatic field E=-V¢ and the uniform

magnetic field B.

§2. Basic Equations

We start from the following set of the equations for two

component isothermal fluid7)
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where the electron inertia and stress tensor are neglected, the

> .
ion charge is assumed to be 2Z=1, the VI term is the ion stress

tensor term which includes the finite ion gyroradius and the ion

viscosity contributions, the source terms Qe

i are introduced to
r

sustain the steady unperturbed state, and the other symbols have

the usual meanings.

We henceforth assume the quasi-neutrality condition n_ =n,;=n

under the condition that kLZAD2<<l » and Ay is the Debye
length. We solve eqg.(2.1) for v and v ’
ell el

>

Vow = D, Vuled/T, - log n) (2.6)

vy =4, +u, -D_ Vv, 1 2.7

Vo, = g Usge cy Vi logn (2.7)
where

N
4y = (c/B?) (BxVe), Uy, = —(T /m8)(Bx¥n)/Bn , (2.8)

andch" , are the classical diffusion coefficients defined,

respectively, by



= = 2
Dc" l'QGTé/mevei' DCJ (Te + Ti)\)ei/meQe . (2.9)

In the derivation of (2.6) the ion parallel motion is neglected,
and in the derivation of (2.7) by omitting the ion inertia and

viscosity terms the following approximation is made,

> ~
Ry = (v ;/9) (T, + T,) (B/B) x Vn .
Substituting (2.6) and (2.7) into (2.4), one obtains

an L 3.y 2 e¢
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> >
- log n) - Vl-(DCIVLn)=Qe.(2.10)
e L

For the ion component, we shall solve egs.(2.2) and (2.5)

to the second order in k 13y and ?fi* is deduced by iteration from

(2.2) as
> > 1 B 8 , 2 02, 132
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Substituting this relation into (2.5) and neglecting the ion

parallel motion, we obtain
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where ﬁHS is the ion viscosity part of VIl and %HFLR the finite
ion gyroradius one, namely,

T.

> > i > >
VHFLR(u"‘) = - 30, {[nA_'_ + Vj_n-V_,_](u_Lx
1

> > >
Vn)-V, u,} .

X

(2.13)

In the derivation of (2.12), the following identity is used
>
ivBx (@, M., + 2V
divig * Infugi™ VM ¥ai * o)

> >

prg(Ue=Ugy) 1t =0 . (2.14)

We thus have two equations, the egs. (2.10) and (2.12), to

determine the variables n and ¢.

§3. Nonlinear Analysis

For equilibrium state, we adopt a slab model with the

density profile
N(x) = Nop(1l + kx) ;, 0 < x < Q. (3.1)

The magnetic field is taken to be in the z-direction. The
electrostatic potential in equilibrium is set to be zero for
simplicity.

We assume €=|k|f << 1 and introduce the following ordering

scheme;

ﬁ/N’be&/Te N w/Qi N w*/Qi'u 0(e)

] 2
kyl ~v 0(e®) vii/Qi ~ 0(e”) , (3.2)

ku?Dy, /uy v 0(eT) , k2D, /u, v 0(e)

where n and ¢ are the perturbed density and potential, w and

(ky, k"=kz) are their frequency and wave numbers and w, is



defined as w*=—kyKTe/meQe. This ordering differs from those

adopted by Hinton and Horton, and by Monticello and Simon.
When we substitute n=N+i and ¢=¢ into the eqs(2.10) and

(2.12) and separate nonlinear terms from linear ones, these

equations can be expressed in a matrix form as

t
(@
i
6]
c
Il
©
I

= B/N

<=
i

e&/Te ’ (3-3)

where L is the linear operator and S is the nonlinear term.
The expressions of L and S are given in the Appendix. By the

ordering in (3.2), we may expand

(2) (1) (2)

L =1 + ¢ L + 2L + - , U=cU'"+ 2 pug'“ly .

(3.4)
S = ¢? s(2)+ g3 5(3)+ s .
Also

3 _ d 2,0 _ ) .

5t - 3. T € G Vg ay;) * '

d _ _9 0

3y = 3y: + € 5yT * , (3.5)

where vg is the group velocity to be determined in the course
of calculation. The reason why the time derivative begins in
the first order in € is due to that w is thought to be first
order quantity in (3.2).

[1] 1st order calculation.

From (3.3), we have

2
L(0) (1) _ 32 g viP= 0 .(3.6)




Here and hereafter Dcn means its value for n=Np. Therefore,

we may write

Zik“z+

o)
|
<
1

= f(l) = h(x,y1,t.=e’t)+ Z{g(x,y:1,t2)e c.c.}

kll

v oE {[f+(X:Y1,tz)elk"z+f_(x,yl,tz)e-lk"z]e—lwt1+lkyy‘40.c.}
Y (3.7)

where h and g denote the modulation of the background density,
and £, and f_ denote the amplitude of drift wave. We have also
assumed that the zero-frequency part of the potential perturba-
tion is equal to the background density modulation. It should‘

be noted that w is taken to be real in the present representation.
[2] 2nd order calculation.

We have

(0) ., (2) (1)

G2, LWy (@

L U =5 .

The components of this equation are

9%, (2) ,(2) d d 3% 1.,
-p = - (2 + Vv, =2f,, . ==D ——(=f ,
on T (0T TV Vg B e 22 )
(3.8)
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3t * Jyo (1) i
of of
> %ty 8 (1) 3
Vi - 3y 3Rt AR gy Ve T (3.9)
where V,= - KTe/meQe , b= -(l/2)ai2A1, 310=(3/3x,3/3yU), and
A=T_/T; .
From (3.8), (0(2)_ w(z)) is found to be
p(z)_ w(2)= 12-. f2(1)+ T (_i)ak{(f+ eik"z+ f_ e—ik“z)
1wt ik, Yo 4 oy, (3.10)



where
Wy = W

knch

is the phase shift between n and § which is proportional to the
linear growth rate. From (3.9) with use of (3.7), we obtain

a;* 33, an £,
2 Qi(;;: T 3% AL)(lky)} ’

{(-iw)(l+(1+k)ﬁ)+ikyv* +A (A+1)

a, " 32[9,] s |9, . £
+>\()\+l)—4—ﬂl{——3 g* - —a'}‘(‘ g* A.L}(lky) =0, (3.11)
oxX f+

AL=-ky2+82/ax2,axig*is'dmacomplex conjugate of g. The equation
gives the dispersion for w(real) which includes nonlinear
frequency shift. If one neglects the small terms in (3.11),

the linear dispersion relation will be recovered
w=w,/[1 + (L+A)b] , (3.12)

- 2_ 2
where b = (1/2) ky a;”.

In the above, we have assumed that f in (3.7) contains

(1)
the terms up to the first harmonic. But the righthand side of

(3.9) generates the second harmonic. It is easily seen that
the second harmonic is smaller by the factor b than the first
harmonic, and can be neglected.

[3] 3rd order calculation.

The third order equation of (3.3) is

(0),.(3) (1),,(2) (2) (1) (3)

L U + L U + L U =S ’ (3.13)

of which the ion part is given by
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(3)

in which the expression of Si is given in the Appendix

and g#z)— JZ) is given by the (3.10). If we substitute (3.7)
into (3.14), we shall obtain the equations for h, g, f+ and f_.
They are
3 gy gy Uk B [J£,]2 + |£_]2] (3.15
3t; < 9% LT+ -1 (3.15)
§
_ag_:. O -— _NL_]{__.?_. *
5%, Og 2% " y" (f+ £*) ' (3.16)
2 3 _ 130 L5844
(ﬂ-z_ AVg E)f_'_ = [Yk(1+ " Bx) + 0 + idwlf,
1 39
+ = Wy Gk Nx f_ ’ (3.17)
5 2 v - L2301, 5 4 isn
(§E; Avg ayl)f = [Yk(l+ " aX)] + 0 + iSw'lf_
1 ag*
+ < w*Sk 5; f+ ’ (3.18)
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In (3-15) and (3-16) we have chosen vg=ngEV*[l+(l+x)B]—1

so as to drop the derivative with respect to y;, and in (3-17)
and (3-18) we have set vg equal to vgo + Avg. On the right-
hand side of (3.17) and (3.18), 6w and Sw' denote the

nonlinear frequency shift,



Sw

Sw'

The

and the factor of (l+k '
growth rate due to the c
density.

(3.11) under appr

eq.

way, by inspection of (3

Yi corresponds to the linear growth rate

’

kxw, {1 + O(b)}

kxw, {1 + O(b)}

Yy, in (1.1)
dh/9x) means the reduction of the

hange in the gradient of the background

Precisely speaking, Gk must be determined by solving

opriate boundary conditions. In another

.11) one may use throughout egs.

(3.15) ~ (3.18) the relation
f f " f
+ A+ w, + Q. a.'k 3 +
S| | = —Z 8| ¢ a1 = Y2, - 28
2
£ ka’D,, £ ka?D_, ox? |
f
2. a."k g 3 g, -
FAO+)—2— L ¥ 0 Sy 2 Y.
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[1] c" g* g* f+
Note that egs.(3.15) v (3.18) are of quasi-linear form. One sees

that the most important

one, which is rigorously

We add a remark on

nonlinear effect is the quasi-linear
demonstrated under the present ordering.

the electron part of the third order

equation of (3.13). That is
_ 32 (3)_,(3) 3 ) (2)
DCn 3 2 (p w ) + (8t1 + V* BYQ)D
z
+ (2= =D Ay, - KXV, 2)f . +V, =2 3 i[6. £...]
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+ D S R T T
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T of of
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1l .3
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2)

where we have used the relation (3.10) to eliminate ¢( and

-1i Z[ka(l)] means the second term on the righthand side of
(3.10). When we compare the zero and first harmonic components
of this equation with egs. (3.15) ~ (3.18), we shall find

the consistency conditions which include the plausible require-

(3) _ ,(3)

ment for o We may take the zero and first harmonic

of p(z) be equal to zero, and also assume consistently the
(3) (3)

second harmonic of p

-V

harmonic component of the eq.(3.19), we obtain the equation for
2

p( )

equal to zero. Therefore from the second

) ) 92 (2)
+ Vv + D Y
(3t1 * Byo Cwn azz )

T e N SOkl c DR e DI
Cn 822 2 (1) "2nd meQe oxX Yo 9Y o X
X3 i[8. £,..11 + o 22 vz (3.20)

k (1) "2nd Cn (1)’ 2nd ' -

9z2
where Y is the zero harmonic part of f(l) and the subscript
"2nd" on the righthand side means to take only the second
harmonic parts. Hence, remembering eq. (3.10), one will be

0(2) and w(2).. Exactly speaking, the

able to determine
expressions of the frequency shift dw and Sw' which appear on
the righthand sides of egs. (3. 17) and (3.18), include

5 (2) 0(2) ]

and We can now express them in terms of f(l)‘

§4. Model Equations

Nonlinear behaviour of the system under consideration may
be described substantially by the following set of the "model"

equations for h and f (f stands for f,)

- 12 -



dh 3%h 3 by oF Y 3
=D, — - (zg(M+Dv.. a,")—h + 2 == (fA, f)
ot cL 3x2 40 11 1 BX“ IKlkyz 9xX
(4.1)
of _ 'L _ 1 3h,,_ _ 3 w o 2
5t 2 el 5 ("AuE) - O+l at A2 £,
o (4.2)

where A, = 02/0x2 - ky2' and

= - 2 2 2 2 2
= 0, (140) (1/2) (ka3 ?) /K, *D = (1/4)c® (k * /ku?)k 222D

L
In the above, we have retained only the important nonlinear interac-

tion terms which appear in (3.15) ~ (3.18).

We rewrite the egs.(4.1) and (4.2) in dimensionless form

as
2 L 2
%% = (622 - 130 g + 2 g% (FAF), A = —2— - k2 , (4.3)
98?2 oE™ 98?2
oF _ _ _ oH _ 2
5= = (1 ag)AF n A2F , . (4.4)
where
H= (n/|c|2)h, F = (n/|c|0)f , k = kyz/n

T=YL tZ(H/Qky)z ’ g= (W/Q;)XEkXX ’

k? D ko2k 2 T,
§ = X _C _ 4 (—2) (2 1 , -
YL K2k 2 Te k_2a.2
y x i
2 2 2
_ 3 By 3va KRy Te My
n = gzoWMDvy; ka) o5 = To Y )
L% K2k 2 i M

y

By the coupled egs(4.3) and (4.4), we can treat such problems
as one-mode saturation near marginal stability, transition to
higher instabilities and particle transport, which will be

reported elsewhere.

- 13 -
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Appendix

i) Expressions of L and S.

_ 3 _ 3% _ 1 2
L = Tt Dc"(x) o Dc;(X)Nz A, (N ’
2
LI S B S E (x) = A, (N2
ot 2 X 173¢ n ci1 N2 1 '
) 52
V*e W P " (x) 9z2
ra. 2 a2 \ (A-1)
3 i b 3 i 3
Vie 3y 2 3% T At 5 K Vaggyey YA 4,

where DC“(x) and DCL(x) depend on x through n=N(x) =N, (1+kx),

A=Te/Ti, and

V., = _Z:_ = - _EE_ LS a = 3 (l a.2 p,)? (A-2)
*e 1+kx meﬂe l+kx ' n 10 "ii‘'2 i L )
The term which includes VHS (see ed. (2.12)) is approximated
as
. 1 B s ~ ed n
div { =X VI } = NAd(A=%+32) .
miQi B s n Te N
Also Se/
S = . (A-3)
S.
i
= > ~
With use of b =B/B, p=n/N and w=e&/Te '
= - Y _ _"e p . x.a_2 -
S¢ = = PVae 3% - Fg bxVy-Vp + D, (¥)——[log(1+p)-p]
e e 0z
1
+ D, (x) Py Ay (N?p2) (A-4)
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T
= _ Y _ e 2uTu-v 1 2,2
S OVse 3y om0 bxVy-Vp + DCL(X) - A, (N“0°)

e'e 2N
L 5a.2(U,n-v el
+ ooy Aayt (VuneVy +onby)ay
+ 1 2 Te . > > >
>N 223 (m 3 )div[n(bxVy)-V,¥]
e’'e
T
i. 2 e > x> 3_11_ 3¢
+ 5 oay (meQe){bXVn VA, p) + VJ ) AFCORACE V( )}
1 2 ) 0
T ai2 {Vln-gz'ﬁl logn+ nzg A, 1log n}
v L a2 (S )aivinBxe-TT,0
>N 24 . iv[n y+V)V,log nl
1 e . > > > > > T T2
+ W aiz(meﬂe)dlv[(n A4V, neV,)bxyy-bxVn-V V, V], (A-5)

where n=N(1+p) is to be substituted.

ii) Expression of Si(3).

3 T
s, = —=— {«f 3F _ ) (0P - 32y
e'e Yo
1 , o f > g 9f .1 _,2f
R LEYE Rt Vo 3571 7 a8 5y Oaf
a.2 T
i e > > > of
+ 5 meQe {(X+l)K(bXVf'V) 5;

O+ [BxIE-T) a0 B aBx¥p (B W), £
L (+2) E(OXVE V) A, F = AV E) - [(BXVE-T) TV, £]

Ol oxv (PP 2 £2) W1 a8

N

+ X(gx;f'%)Al(w(z)—p(2)+ % £2)

8.2 @) leo
N ax v, ay](p Y 5t )} .

(A-6)

Bf) i

Loy, * Sx -

[(V

In the above, the abbreviation fEf(l) is used.
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