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Abstract

Contribution of the second order terms in the reductive
perturbation theory has been investigated for the nonlinear
shallow water waves. The fundamental equations are reduced to
a coupled set of the Korteweg-de Vries equation for the first
order horizontal velocity and a linear inhomogeneous equation
for the second order arbitrary function. Structure of the
coupled set of equations turns out to be the same as in the
case of nonlinear ion acoustic wave. A steady state solution
of the coupled set of equations has been examined in comparison
with Laifon's analysis of the second order contribution of the

Friedrich's expansion for the nonlinear shallow water waves.




§1. Introduction

Basing their analysis of large time asymptotic behaviour
of the linear wave and of a nonlinear steady state solution,
Gardner and Morikawal) have presented a systematic derivation
of the Korteweg-de Vries equation for the nonlinear shallow
water wave in the long wave length limit as well as for the
magnetohydrodynamic wave propagating perpendicular to an external
magnetic field.

The Gardner-Morikawa transformation has been extended by
Taniuti and Weiz) as the reductive perturbation theory for a
system of nonlinear partial differential equations, which
describes propagation of weakly dispersive wave. The reductive
perturbation theory has been formulated also for strongly
dispersive nonlinear systems3), giving rise to the nonlinear
Schrodinger equation.

Concerning with the problem of shallow water wave, Keller4)
has obtained steady solitary wave and cnoidal wave solutions as
the first order approximation in the Friedrich's expansions),
which is based on the ordering in terms of the relative size of
the water depth and wave length. Their solutions agree with

the solutions of the Korteweg-de Vries equation. Later, Laiton6)
have examined contribution of the second order terms in the
Friedrich's expansion to the steady nonlinear shallow water
wave propagation.

Now, we have investigated the higher order contribution of
the reductive perturbation theory in a case of the weakly dis-

7)

persive ion wave ' . Here, applying the same approach, we




investigate contribution of the second order terms to the finite
amplitude shallow water wave. In the next section, we derive

a coupled set of the first order Korteweg-de Vries equation and
the second order equation. In the third section, we examine

the steady state solution in some details. We discuss the
present results in comparison with Laiton's solution in the

last section.

§2. The second order approximation to the nonlinear

shallow water wave

Applying the reductive perturbation theory to a system
illustrated in Fig.l, we investigate two dimensional irrotational
motion of incompressible nonviscous fluid. We have the following

set of fundamental equations,

% U + 5y v=20, (1-a)
%u+u%u+v%u=-%-§3§P , (1-b)
g% v + u g% vV + v g% v = -g - % g% P, (1-c)

g% v - g% u=20 . (1-4)

As for the boundary conditions, we have

n+ u(x,n,t) a-axn- v(ix,n,t) =0 . (1-e)

and

P(x, n, t)

i
o
-

(1-£)




at the free surface y=n(x,t), and we have

at the bottom y=0. In the above set of equations, p is the
fluid density, g is the gravitational acceleration, u and v are
the velocity component in the horizontal and the vertical
direction, respectively. P is the static pressure.

As is well known, linearization of the above set of equations

leads to the dispersion relation
w? = gk tanh (hk) (2)
which is reduced to
= (gh)'/? Kk (1 - T+ FHhk) - e } (3)

in the long wave length limit hk<<l. Hence, ordering the wave
number k to be small as the order of 81/2, we introduce stretched

space-time variables (&, Yy, 1) defined as
£ = e/ 2(x-st), y=y, T=¢"t , (4)

where the velocity s should be determined through perturbational

analysis. The basic equations (1-a)~ (1-g) are transformed into
sl/z g% u + g% v=2~0 ' (5-a)
g3/2 g% u + el/z(—s g% u+u g% u) + v §§u=—el/2% g%P , (5-b)
63/2 g%v+el/2(—sg%v+u§%v)+v§%v=—g- % g% P , (5-c)




/2 a3

€ 5E V -~ 3y u=20 , (5-4)
e3/2 g%n + 81/2(—sg%n+u(i,n.r)§%n)-V(E.n,T)=0 , (5-e)
P(E,n,T) =0 (5-£)
v(g, 0,71) =0 (5-9)

Observing egs. (5-a)-~ (5-d), we introduce the following perturbation

expansions,

n (n)

u(g, Y,T)= z € u (g, Y, T) ’ (G'a)
n>1
viE, vy, 1) = /7 m Mg gy (6-b)
nzl
Pe, vy, 0 =P Wyqyyez P p® g ooy (6-c)
n>1
(€, ) =h+ ™ (g, . (6-4)
n>1

With regards to quantities evaluated at the free surface boundary,

we have to expand them as follows,

u(g,n,t)=¢ u(l)(i,h,T) + g2 {u(z)(E.h,T)

+ uy‘l’(g,h,T) nMe, ) 4 e , | (7-a)
vig, n, o o= evBg, n, 1) v e2v@ (g, n
+v. W, n, on® g,y o+ (7-b)

y
P, n, 1) = PO (n) 4ep@) (¢, h,T)+P§°’(h)n‘l’(a,r)}
+ e2p® (g, n, 1) + Py‘l’<a, h,t)nY (g, 1)

R N TR D RS () I ¢ I (7-c)

1
+ =P
2 Tyy y !




in which suffix y stands for the partial differential with respect
to y.

Now, substituting the perturbation expansions of egs.(6-a)
~ (6-d) and (7-a) v (7-c) into the transformed basic equations

(5-a) v (5-g), we obtain in the lowest order of g,

3 0) _ i}
3E P =0 ’ (8-a)
e -1 3 (0) _ -
9535 " o . (8-b)
p(® (¢, h,0) =0 . (8-c)

Egs. (8-a) v (8-c) determine the unperturbed static pressure as

p(® (g,y,1) = pglh-y) . (9)

We have then, in the first order of ¢,

2t v -0, (10-a)
sg%u(l) - % g% p(1) (10-b)
g% P(l) -0 , (10-c)
=0, (10-d)
v(l)(g,h,r)+s§%n(l)(g,r) -0 , (10-e)
pM e n,1) - pgn P, =0 , (10-£)
v, 0, ) =0 . (10-g)




These equations determine the velocity s as
1/2
s = (gh)'/* (11)

which is in accord with the leading term of the linear dispersion

relation (3). The first order perturbed quantities v(l), P(l)

and n(l) are expressed in terms of the horizontal velocity

component u(l) as
v Wiy, 0oy, Do (12-a)
P, vy, =0 s u®,n (12-b)
e, = s/ u e, (12-c)

where the suffix £ expresses the partial differential with respect
€. Explicit space-time variation of the first order horizontal

(l)(E,T) is not determined at this stage,

velocity component u
but will be specified through the Korteweg-de Vries equation
which is reduced as a compatibility condition of the second

order equations.

In the second order in ¢, we have

3¢ U + 5y ¥ =0 , (13-a)
Su) sppu'?) 4w AW o c a4 P (13-b)
sppv' ) = 2 IR AL (13-c)
vt - =0, (13-a)




I N ] P @y WM, a3
p2 (g, h, 1) -pgneE,n =0 , (13-£)
v @ (g, 0, D=0 . (13-9)

We remark here that u(l) and v(2) of eqg.(13-e) are evaluated at

y=h, and that the last term of eq.(13-e) results from the term

of Vy(l)(ﬁ, h,7) n'!) of eq.(7-b). Integrating (13-d) with (12-a),
we get
(2) __ 1 2. (1)
u (gl YIT) - 2 Y ugg + F(EIT) ’ (14)

where F(&,1) is an arbitrary function introduced through the
integration with respect to y. Substitution of (14) into (13-a)

yields

3 (1)

V(z) (El Yo 1) = % Y u;gg - Y Fg(ng) ’ (15)

in which the boundary condition (13-g) has been invoked to
determine an integration constant with respect to Y. Then,

eq. (13-c) with (13-f) leads to

P(2)(E, y, 1) = %(hz - y*)ps uéé) + ogn(z)(i,r) . (16)

Eg. (13-b) with (14) and (16) takes a form of
23 (1)

(1) (1) 3 (1)_ (2)

9 1 gp2_9_ -
AT U + 5 sh 8£3u + u 5E SFE g ng , (17)
while eq. (13-e) is reduced to

9 (1)_ 1 _ 2 9% (1) (1) 3 (1)_ _ (2)

Nt u 3 sh“—u + 2u agu = ng + gnE . (18)

3g?




Therefore, we obtain the Korteweg-de Vries equation

3
(1) 9° 1)

3g?

(1) & (1)

1 2 3
+ 3 sh + 5 u 5E u

9 -
5? u =0 ’ (19)

as a compatibility condition of (17) and (18).

In order to determine the second order quantities u(z), v(z)

(2)

and n » we have to determine the unknown function F(&,T). Going

up to the third order in e, we get

3 .. (3) 3, (3) -
SE u + 3y v =0 , (20-a)
g%u(Z)_ sg%u(3)+ u(2)§% (l)+ u(l)g%u(z)
(1) 5 (2) 1 3 S(3) _
+ v sgu = 0 3£ P ’ (20 b)
3 (1) 3 (2) (1) 3 (1) (1) 3 (1) 1 3,(3)
e v S§EV + u szv + v 5€v = - > 5§P , (20-c)
2 v(2) -2 u(3) =0 . (20-4)

Concerning with the free surface boundary condition, eq. (5-e)

is reduced to

é% n(2) _ s§% n(3) + u(l)g% n(2)+ u(2)§% n(l)
- v(3)— v;z)(g, h,T) n(l)- v;l)(g, h, T)n(z) =0 , (20-e)
where u(l), u(2), v(3), v;l) and v(z) are evaluated at y=h.

Eg. (5-f) is reduced to

p 3, n, 1+ P§2’(g, h,oin P (g, + P;O)(h)n(3)(£,r) =0

(20-£)




At the bottom, we have

v, 0, ) =0 . (20-g)

Integrating (20-d) with (15) with respect to y, we get
(3) - L _ 1 e -

where G(£,T) is a third order arbitrary function. Substituting

(21-a) into (20-a), we obtain

1

53 3
3
120 Y

a—ng-ya—gG, (21“‘b)

s 0° e
3ES

v(?’)(E, y,T) = -

where the integration constant is fixed to be zero by the boundary

(3)

condition (20.g). The third order perturbed pressure P (¢, y,T)

is obtained by integration of (20-c) with (20.f) as follows,

p(3 (g, y,1) = 3 oly?-h?)u

D 4o slzglyt-n").
(1)

(1) (1)
Yreee uou

+ Ln?-y?)F 1 + 3 ply?-h?) :

£g

1 n2_y2 (1), 2 (1) (1) (3) _
+ 2p(h y )(ug ) + psh n ugg +pgn . (21-c)

Then, eq.(20-b) with egs. (14), (21-a) and (21-c) is reduced to

9 1 2 93 ] (1) _ _ (3)
B_T- F + 5 sh ag?, F + sf(u F) = s Gg g T]g
1 ., 9> (1) 1., (1) 1, ., (1)?
+ EZSh 7es u + > h uEET - fh (ug )g
_ 1.2 ) (1) (1) -
3 h 3 (u ugy ) (22-a)

where all of the terms depending on y are cancelled out. Eg. (20.e)

gives rise to

- 10 -




0 1 ., ¢ . (1) _ (3)
aTF"gSh —a—g——aF+23—€—(u F) ng+gn£
1 9., (1), 1. (1) 1 u_ﬁi (1)
Ts 370 )+ Fhfug - 5ash 35
5.2 (1) (1) 5.2 (1) (1) 3..(1) (1) _
+ Eh u uggg + gh ug ugg - Zgu ug . (22-b)

As the Korteweg-de Vries equation (19) has been derived by

eliminating (s Fg - gng(z) ) from egs.(17) and (18), elimination

of (s GE - g né3) ) from egs.(22-a) and (22-b) yields an equation

for the unknown function F(£,T) as

3
% sh? -2~ p 4

983

P 3 5 (1) - (1) -
35— F + 7 3 (u F) S(u ), (23-a)

(1)

where the source term S(u ) is defined as

(D)y _ - 19 . 3% (1)_53,, 5,93 (1),
S(u ) = 360 sh 3es u 75 h? BE(BE u )
3
- S p2 o) 37 (1) (23-b)
12 8&3

The first term of eq.(23-b) represents the third term of the
linear dispersion term (3), while other two terms describe the
wave-wave interaction between the nonlinear waves u(l), which
is determined by the Korteweg-de Vries equation (19). Thus,

(l))

the source term S(u describes contributions of the higher
order nonlinear effects in competition with the higher order
dispersion effect. Solving eq. (23-a), we can determine the
second order velocity components u(Z)(g, y,T) and v(2)(£, Y,T)
through egs. (14) and (15), and the second order water elevation

n(z)(E,T) from eq. (17).

- 11 -




§3. A steady state solution

Although the coupled set of equations (19) and (23-a) with
(23-b) has a full of variety of solution, we examine its steady

state solution which depends on a translational variable
-1/2
X = (sh?) 720 - . (24)

Here, A is a parameter to be determined from the solution.
Restricting our interest to the soliton solution with the
vanishing derivatives at infinity, we can reduce the coupled
set of egs.(19) and (23-a) with (23-Db) into the following set

of equations,

2
L T A (25-a)
dx?
” _ L
a4 330 - 20)F = - s 1{%% a' .,
d}(2 dxu
5 (1) 4% (1) 43 ,d (1),2
+ 5u — u + 5 (3x ¢ )} . (25-Db)

dx?

Now, as is well known, eq. (26-a) has a steady soliton

solution

u(l) = U sech? (DX) , (26-a)
with

1/2

D = (3U/4) : (26-b)

and
1
A=35U0 . (26-c)

Substitution of the one soliton solution (26-a)Vv(26-c) into eq.
(25-b) leads to a linear inhomogeneous second order differential

equation for F(X).




Introducing a new variable

¥ = tanh (DX) ’ (27)

we can transform eq. (25-b) as

2
A p_op w4, 12 (2 - u2 )F =
bl 2 1- 2 dLl 3
H U (1_u2)2
32 D' 19 1 3 _ 2
3 5 { 10 ———l_uz 5t 40 us)} . (28)

Since the associated homogeneous equation of (28) has two

independent solutions,

P53 (1) =15 u(1 - u?) (29-a)
0% (1) = P w-ulogt + 2 _ 15014745 (29-b)

1 -1y

we can obtain the solution of (28) by a standard method of

variation of undetermined coefficients setting as

F(u) = ¢:() P3 (u) + ¢(m) 02 (u) . (30)

The coefficients ¢, (u) and ¢2 (H) are easily calculated as

¢y (u) = - é% %; {%[— %1 + 9u? - 1%2 ut o+ lgé b
- 15u8]109%§ﬁ + - %? uo+ 1%5 e %fus
+ %§u7 1} , (31-a)
and
b2 (n) = % %; {%%(1-u2)2+ %(1 - u?)d - %(1—u2)“} . (31-b)

- 13 -




Therefore, the final expression of F(u) is obtained as

' 2
ray = £ 8 -p?) (38 - 141-u?) + 5(1-uD)?
4 s 5
+ u DX[- g + 10(1-u?) - 5(1-p2)21} . (32)
Hence, the second order horizontal velocity component u(2) is

determined to be

2
u(?‘) (%’;)2 —U?sechz(DX) {- 2 + 3 sech?(DX)}

NN

2
%;sechz(DX) {%? - 14 sech? (DX) + 5 sech" (DX)

+
> =

+ DX tanh(DX) [- % + 10 sech? (DX) - 5 sech*(DX)1} . (33)

The surface elevation n(X) of the shallow water wave is determined

correctly up to the second order as

n(X)_ U 2 U, 2
h 1 + S sech? (DX) + (S) sech? (DX)

(2 - 7 sech? (DX) + 2 gech'(DX) +
5 4 4
3 5 2 5 u
DX tanh (DX) [" 1—6‘ + -2- sech (DX)- Z sech (DX) ]} . (34)

Fig.2 illustrates the present result (34) evaluated for a
parameter of U=0.12 s and the second order contribution n(z)(x)
expressed as the third term of (34). The dotted line is shape
of the Korteweg-de Vries soliton for the same value of U.

Since experimental observation does not distinguish the
first order and the second order contribution of the solitary
wave, it would be appropriate to reexpress eq. (34) in terms
of an actual height A defined as the water elevation at X=0.

Taking X=0 in eq. (34), we have

- 14 -




u? o+ %g s U - %g gA=0 . (35)

Eg. (35) determines U as

(@
]
r—~—
=

- 3B By
TR teE s . (36)

Hence, the expression of water surface elevation takes the

following form

n(X)_ A 2 1,42 2
5 1+ 5 sech? (DX) + 2(h) sech” (DX) .

{(1- %sechz(DX)(l - sech?(DX)) + DX tanh (DX).

+ 5 sech? (DX) - % sech* (DX))} , (37)

ujw

(..

in which DX is redefined as

l1,3A,1/2 _ 3 é _ é 5/2
DX = H(ZH) (1 20 h)(E AT) + O(h) ’ (38)
and
A_1A_ 3 A, A s
S > h 20(h) + O(h) . (39)

§4. Concluding discussions

Firstly, we examine the present result in comparison with
the result given by Laiton. He has derived the following

expression for the steady solitary wave solution,

sech? (LX) - %(%)zsechz(LX)

=

(1 - sech?(LX)) + O(%)3 ’ (40)

with

..15_




1/2 _ 5 A A 5/2
) (1 -3 Xt O(h) . (41)

ol o
W
o plh

LX =

The velocity of the solitary wave is given as

yd . (42)

Comparing the above expressions with egs. (37), (38) and (39),
we find that the soliton velocity turns out to be the same,
although the shapes of the solitary wave are different in both
theories.

It should be noticed that the essential nonlinear effect
is fully accounted for by the third term of the Korteweg-de
Vries equation (19), while the second order quantities are
determined by a linear partial differential equation (23-a),
of which inhomogeneous term is composed of the next order
dispersion term and the terms representing the interaction
between the fundamental nonlinear waves. Structure of the
inhomogeneous term is essentially the same as our previous
result obtained for the ion acoustic wave, except numerical
coefficients of each terms. Thus, we can conclude that the
reductive perturbation theory provides a systematic way to
treat the self-interaction of nonlinear wave in the lowest order
and then allows to treat the mode-mode interaction among the

nonlinear waves as higher order perturbation.
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Captions of Figures

Fig. 1 The coordinate system of long-wave disturbance.

Fig.2

The steady solitary wave in the second order approxima-
tion for a value of U=0.12s. The broken line represents
contribution of the second order terms. For the sake of
comparison, the first order Korteweg-de Vries solitary

wave is shown by the dotted line.
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