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ABSTRACT

A nonlinear effect of a large amplitude electrostatic
wave propagating perpendicularly to a static magnetic field
on the motion of an ion is studied, We consider the case
where the frequency of the wave ®w is sufficiently close to an
multiple of the ion cyclotron frequency Qi. If the trapping
frequency wt << Qi » most of hot ions (Vy > ®W/K; ) are trapped
in cells of a phase space separated by separatrices. However
it is found that the trapping motion is influenced by periodic
forces. These forces lead to randomization of the trapping
motion near the separatrix and ions are expected to be stochas-
tically accelerated. In order to confirm the results, numerical

’

calculations are carried out.



§1 1Introduction
The formation of a high energy. tail in a velosity distri-
bution of ions has often been observed in experiments on lower

1)

hybrid resonance heating. In order to explain the tail
formation, we consider a nonlinear motion of an ion affected by
a coherent electrostatic wave propagaﬁing perpendicularly to a
uniform magnetic field. In the case of an oblique propagation,
Smith and Kaufmanz) have shown the occurrence of stochastic accel-
eration along a magnetic field subjeécted to stochastic perpendig-
ular acceleration. However the threshold 'of the wave amplitude
is so large, when k"vtherma1<< Qi' that their'results are n;t
applicable to the lower hybrid wave. In this paper, we show
that destruction of adiaﬁ%?ity of the magnetic moment can appear
even if kw = 0 and no spatial inhomogeneity exists; this inhomo-
geneity has been essential in many analogous studies on cyclotron
heating in a mirror field.356) |
In the next section, by introducing. appropriate canonical
ﬁariables; we oEtain an expression of the Hamiltonian of a test
ion as a sum of a time-independent part HO and a time-dependent
one H,. The motion of a phase point derived from Ho is studied
in §3, where we find that the majority of hot ions (v, > w/k,) are
trapped in cells of a phase spaCe separated each other by separa-
trices, when the wave frequency is sufficiently close to an ion

cyclotron harmonics. The analysis of a periodic force derived

from Hl shows in §4 that it resonates with the periodic motion



determined by HO and forms islandé on a phase trajectory.. The
overlapping of islands near a separatrixucaﬁses stochastic
instabilityz); then the motion of an ion becomes stochastic

in this region. In the last section, we shall discuss the

stochastic acceleration of a high energy ion as well as the

result of numerical calculations._

§2 Basic equations

We consider the motiop of an ion, mass m and chargé e,
in a uniform magnetic field §0= 303 in the presence of a mopo-
chromatic electrostatic wave ¢‘cos(kx - wt) propagating perpen-
dicularly to the magnetic field. The Hamiltonian of a test ioh

takes a form,
E(x,y,Px,Py,t) = {Pi+(Py-eBox)2}/2m + ed .coslkx-wt), (1)

where Pz and Py are the canonical momentum conjugate to = and Y,

respectively (Px = my P = mvy+ eBox). - Since the Hamiltonian

x' Ty
is independent of y, the momentum Py is a constant of motion.
Defining the magnetic moment‘ph and the cyclotron phase 6 by

the relations,

1 mo¥ |
p o= {pﬁ +(Py-mﬂi:c)2} = , : (2)
x-P /mﬂi v
® = arcsin(—¥%—=) = arctan(- %) R (3)
VZU/mﬁi vx ‘



where the ion cyclotron frequency is denoted by Qi = eB,/m, we
may rewrite the Hamiltonian after the canonical transformation

from (x,Px) to (8,u),

H(B,us t) = uQ; + e COS(k/Zu/in sing - yt) (4)
= un; + e¢ § I, (ky/Zu/mag) cos(ne - wt) . (5)
n=-co

here a series expansion of Bessel functions Jn is applied.
By the use of an integer "y nearest to m/ni, we again perform
the canonical transformation from (8,u) to (g,M) defined by the

generating function,
S(e,M,t) = (noe'- wtIM (6)

which contains the time t explicitly. New variables and the

Hamiltonian are given by

£ = noe - wt (7)

M=yu/n, . (8)
H(E,M,t) = (nogi - wlM

+ e ; Jn(k/2n0M7in) cos{ng/no # (n-no)mt/no} (9)

This Hamiltonian is expressed by a sum of a time-independent part

HO(E,M) and a time-dependent one Hl(E,M,t);



HO(E,M)

Sw M+ ed Jno(kp(M)) cost , (10)

B (E,M,t) = ed ] J,(ko(M)) cos{n/n, + (n-nylwt/n,}, (11)

n#no

here we have introduced, for simplicity,

Sw = nfy -0, ‘ (12)
P(M) = VEn M/mAy = v,/ , (13)

53 Motion derived from g,

If the motion derived from Ho is characterized by suffi-
ciently small d&/dt and dM/dt, the time average of HI(E,M,t)
approaches zero and its contribution on an ion motion may be
neglected; therefore we first consider the motion derived from
Ho alone in this section. The equations of motion obtained

from eq. (10) are

dkp kno 330 kna
P = - = e¢ J ,(kp) sing , (14)
dt mQ.p OF mQ, p n

i i ‘
dag 830 kno ’ 4
—_ = — = Sw + ep J o(kp):cosE ’ (15)
dt oM ' mﬂip n

and the qualitative phase trajectories are illustrated in Fig. 1.
Trapped regions enclosed by separatrices can exist where kp 2 n
if 6w is smaller thén (kno/mﬂip) ed max{IJno(kp)l}. With Sw
approaching to zero, however, untrapped regions vanish and all

ions are trapped in rectangular cells.



When kp >> n,. We can use the asymptotic expansion of J,,:

Jno ~ VY2/mkp cos(kp - (2n0+1)ﬂ/4) = o/2/nkpo coskp ., (16)

where P, satisfies Jéo(kpo) = 0 and it has been assumed that P =
P - Py << Py The quantity 0 takes the value *1 depending on
kpo. Making use of the bounce frequency at the center of the

trapped region,

o, = —20 43 (ko) = °s ny 27 ' (17)
t map, no "To0" . Q; (kpo)s/z qi7?
we obtain the equations of motion,
dkp/dt = © Wy coskp sing , (18)
dg/dt = 6w - © Wy sinké cost , ' (19)

where we have denoted the bounce frequency without a magnetic
field by wg = (k2e¢/m)1/%

We assume that 6w << W in the following, in order to make

quantitative analyses possible. On this assumption, the equa~

tion of motion in the cell takes the form,

akp/at = o w, (q° - siakp)1/Z, (20)

t

The quantity gq defined by

kn H
0_ 0,2, (21)

mdiPp Oy

g 2 1-(



takes the value zero at the center of the cell and unity at the
separatrix; and this quantity ¢ will be used as the parameter
of elliptic functions and elliptic integfals introduced below.
Using Jacobian elliptic functions, we can express the solutions

to eq.(20) as follows,

sinkp = q sn{mt(t-to),q} P (22)

coskp = o, dn{wt(t-to),q} ’ ' (23)

sing = g cn{wt(t-to),q} / dn{wt(t-to),q} ' - (29)
f-g? |

cos§{ = o, Y1-q° / dn{wt(t-to),q} . (25)

The quantity 9, and 0, which take the value *1, and the time to
depend on the initial value; however the initial conditions are
not so importént in the analyéis that we aésume 0, = 0, = 1

and to = 0 for brevity.

The Jacobian elliptic functions are periodic with’'a period
4Fo(q); here complete and incomplete elliptic integrals of the
first kind are denoted by Fé(q) = F(mn/2,q) and.F(w,q),Arespec;g__
tively. Hence the motion derived from Ho has a period T =

4Fo(q)/wt and we can express it by the form
ar/dt = o , (26)

dn/dt = Q,_(I) = (n/ZFO(q)) w

€ (27)

t 4



making use of the action-angle variables (I,n) defined by

1 2 inpo q q
I(Ho) = — % Ma =-— [ F (q) dq . (28)
amw ™ kno 0/3_q2
o (& m F{arcsin(sin&/q),q}
n(E,Hb) = — I M dE = — . (29)
oI 2 Fo(q)

The relation between variables (£,M) and (I,n) are illustrated
in Fig. 2; it is easy to see that the phase space area enclosed
by & trajectory equals to the action 27I and the angle N means

the phase on the trajectory, I = constant.

§4 Effect of periodicvforce derived from Hl
Since the time-dependent part of the Hamiltonian, Hl’ has

an explicit periodicity, the force deri#ed from Hl is able to
resonate with the periodic motion determined by Ho and to form
islands on the resonant trajectory.

When we use the asymptotic expansion of J, as well as eq.(16)
on the assumption that kp >> n, and take account of only the
termssn==noi 1 which are dominant for the island formation,

the time-dependent part H1 becomes
Hi = - 2e¢Y2/1kp, sinkp sing sinf(€+wt)/n0} . (30)

Considering the existence of Hl' we find that dr/dt does not

vanishes, t1.e.,



ar  ar 98 9H. 9H. 3%
i (- —92 _1,_0°1, (31)
at  ax, aM 3E  BE M

2

m.p,. 2w -
= 10 t (coszkﬁ sinzg - sin2k5 coszg) sin(
kno Qt no
mﬂip 8t o« (28+1) r2$+1

0
t L 2(2s8+1)
kno FO 8=0 1 - r

wt+§ - wt+g
+ 2(2s+1)9t¢} + sin{

E*wt

) (32)

x (sin{ - 2(28+1)Q.t}) . (33)

n n

0 0

Here we have used the series expansions 8 of Jacobian elliptic
; 2
functions in terms of the nome: r = exp{-nFa( 1-q )/Fo(q)}.
In a case of our interest, n, >> 1, the time variation of g/n,

" O(w./n,) can be neglected; therefore the resonance condition is
0

1 w - 1
Qt(Ir)~= —— — v ——Q, (s; integer). (34)
2(2s8+1) n, 2(2s+1)

Because of the I dependence ofS?t(I), this resonance leads to the
island formation on the resonant trajectory. Near the resonance

I = Ir' the equations of motion are approximated by the expression,

dAr/dt

Ps sinAn , ‘ (35)

dan/dt = 2(28+1){dR,(I_)/dI}AI , (36)
here the variables AI and An are defined by

AT =I-1I_, ' ' (37)



An = 2(23+1){Qt(I) - Qt(Ir)}t ’ (38)

and the nonresonant terms in eq. (33) have been neglected. The

first integral of egs. (35) and (36),

G = 2(Zs+1){d9t(Ir)/dI}{(AI)Z/Z} + rs cosAn, (39)
gives the width of the island,

Ir, |

AT =2 ( _)1/2 (40)
2(2s+1) a0 (1) /a1l
r
therefore the frequency width of the island is
lag, (1 _)saz| |r_|
_ ( t 'r 8 )1/2 : (41)

t max 2(2s+1)

On the other hand, the frequency spacing of adjacent resonances

is obtained from eq. (34) as follows,

2
1 1 w . 49
6Q, = Q(s'l)- 9(3) = { - } — t. . (42)

t t 2(26-1)  2(28+1) m, o

The explanation of the meaning of Aﬂt max and GQtvlS shown in

Fig. 3. It is known N

that if adjacent islands overlap,
then the motion of a phase point becomes stochastic. This
condition, called a stochastic condition, is given by the following

expression,

- 10 -



2
' K= (209, _ /89,.)
af 1 8 E, - ,(1-.q2.)F0
= — - 21, (43)

2 ——— —
O sinh{QiFo(/Q—qz)/wt} m /Q-qg qz
here E, denotes the complete elliptic integral of the second kind

E,(q). It should be noted that if ¢ approaches to unity,

the quantity X diverges.provided that wt/gi #0.

§5 Discussion of the results

The motion of an ion is consideréd to be stochastic in the
region where X ? 1, The ratio R between the phase space area
of the stochastic layer in the cell and the total phase space area

of the cell 27mI(g=1),
R(w./R3) = 1 - I(q;K=1)/I(q=1) , (44)

is exhibited in Fig. 4. It is found thatlthe ratio R begins
to increase fairly abruptly when wt/gi exceeds 0.2, which i;
ragarded as a threshold for an applied electric‘field to bring -
stochastic behavior of an ion motion. The saturation of R
can be seen where wt/ﬂi R 0.5; however, if we take account of the
higher order resonances, n = n,* j (§j > 2), it is infered that
the ratio R keeps increasing to attain unity.

Since the stochasfic layer near a separatrix contacts with

the stochastic one in the adjacent cell, it should be expected

- 11 -



that the ion contained in this region stochastically moves into
the adjacent cell and that the diffusion in the ion perpendicular
velosity distribution takes place.

In order to confirm the above theoretical consideration,
ﬁumerical calculations are performed according to the equations
of motion deduced from eq. (4). Some examples are illustrated
in Fig. 5 and 6; in each case w/Qi-is equal to 5 and the phase |
points are plotted at intervals of At = ZW/Qi; theoretically
predicted separatrix and the center of cell are indicated in the
figures. Two cases for different wave amplitudes are shown in
Fig. 5; the theoretical bounce frequencies at the center are
calculated: a) wt/ﬂi = 0.13 and b) wt/Qi = 0.26, In the case
of b), islands at the resonance of Qt(I)/Qi = 1/6 are observed and
the motions are randomized outside of the.trajectory which starts
from (kp,E) = (8.15,0.0). Figure 6 shows the phase points
initially at (kp,E) = (7.4,0.0) when the wave amplitude is as
same as Fig. 5 b). It can be seen that the phase point randomly
wonder from a cell to an adjacent cell.

We conclude that a monochromatic electrostatic wave propa-
gating across a magnetic field can generate a high energy tail in
a perpendiculr velosity distribution if dw << W, - The stochastic
formation of this high energy tail is restricted by the condition

v, > m/kl and

- 12 -



ed k1/2 w

Wy :
— ¥ — > 9.2 v (45)
d/2 3/2 A !
2 m Qg v,
in the case of w/ﬂi > 71, A high energy 1imit of this tail

may be given by the latter condition.
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Fig.

Figure Captions

Phase trajectory obtained from eq. (10) for the case

a) 6w #0 and b) 6w = 0,

Illustration of the relation between the action-angle
variables (I,n) and (g,M).

A sketch of the frequency width of islands AQ and

the frequency spacing of adjacent resonances 69

The ratio between the phase space area of the stochastic
regioﬁ in the cell and the total phase space area pf the
cell 2nI(q=1).

Motion of phase point calculated from eq. (4). The
value w/ﬂi is equal to 5 and'(wB/ﬂi)2 equals to a) 1.0
and b) 2.0. Points are plotted at intervals of At =
2w/ni. A circle indicates the initial point.

Motion of a phase point. Parameters are the: same as
Fig. 5 b). The initial point (indicated by a circle)

differs from the previous case.
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