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ABSTRACT

It is analytically shown that the decrease of the
return current of plasma forces an injected relativistic
electron beam to land on an equilibrium orbit inside a
conductive toroidal chamber. The mechanism is similar

to the adiabatic trapping of electrons in betatron.



1. INTRODUCTION

Successful injection of high current relativistic electron
beam (REB) into toroidal systems will offer a new possibility
for plasma confinement and heating. The poloidal magnetic field
necessary for plasma confinement can be produced by toroidal REB

1~3)

currents, and  effective heating of plasma caused by the energy

transfer from REB to plasma is also expected.4~6)

One of the
problems which we have to solve in this scheme is how to inject
REB into a toroidal chamber from the outside and to form an

REB ring in an equilibrium state. Several contrivances for this
purpose have been tried in several laboratories. In the case of

ASTRON7) 8)

and RECE-Berta ', REB's were injected through snorts,
which were set oblique to the symmetric axis of the magnetic
mirrors to avoid the collision of the beams with the snorts.
Resistors installed inside the chamber wall functioned to damp
the axial oscillations of the beam. The pulsive extraction of
a toroidal magnetic field towards the beam gun (field shaping
cathode)g) and the use of the toroidal drift of electron beamlo)
have been applied to inject REB into toroidal magnetic field.
It has been experimentally shown that the change of the rela-
tivistic factor y during the injection also helps the REB to
launch on the equilibrium orbit in an applied vertical magnetic
field.ld)

Electron beam rings formed just after the injection deviate
from the equilibrium position. This means that the beam ring has

a potential of energy to the equilibrium state. If there is no

dissipation of the energy, the ring oscillates or circulates



around the equilibrium position with a constant amplitude.

In this paper, it is shown that the growth of the net
current, which is caused by the decrease of the return current
in the plasma, makes the oscillation shrink in amplitude adia-
batically and forces the beam ring to land on the equilibrium
orbit. This mechanism is formally similar to the adiabatic

trapping of seeded electrons in betatron accelerators.lz)

2. LANDING OF REB RING ON EQUILIBRIUM ORBIT

Let's consider the following case. An electron beam is
injected into a toroidal conductive chamber from the outside.
Both a toroidal magnetic field and a vertical magnetic field are
externally applied. A neutral gas or a plasma of an appropriate
density is present inside the chamber. At the injection the beam
is directed parallel to the minor axis of the torus. The elec-
tron beam goes forwards along the toroidal chamber (ionizing the
gas in the case of the injection into the neutral gas). The
fast change of the magnetic field induced by the beam current
gives rise to a return current inside the plasma, and the mag-
netic field of the beam current is shielded by the return current.
If the return current decays faster than the beam current, the
resultant net current increases with time. This net current
induces a Foucalt current (image current) in the conductive
toroidal chamber and, as a result, the motion of the beam is
subject to the magnetic field due to the Foucalt current. This
reaction increases with time during the decay of the return

current. When the vertical field is set to make the beam ring




settle on the axis of chamber in the final equilibrium state, a

beam ring, which is initially formed eccentric to the axis, will

oscillate about the equilibrium position changing its amplitude

and frequency.
We shall consider a cold monoenergetic REB ring which is

formed eccentric to the axis of the toroidal chamber. The

basic equation of motion is
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where My and e are the rest mass of electron and the positive

unit charge, and y the relativistic factor. We employ cylindrical
coordinates (r,¢,z) as shown in Fig.l. The toroidal conductive
chamber has a circular cross section of the radius a and its

major axis is R. The cross section of the ring is assumed to be
negligibly small compared with that of the toroidal chamber.

We confine ourselves to treat the axisymmetric motion of the

ring within the ordering
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where I_. is the Alfvén 1imitl3)

A and In is the net current. The

latter ordering means that we are considering the case in which
only a small part of the kinetic energy of the beam is transferred

to the magnetic energy. The equation (1) is rewritten by
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The toroidal magnetic field Bt and the vertical magnetié field

BV are externally applied so that
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Here, BV corresponds to the betatron field of electrons having
the circulating radius of R. When the beam ring locates at
(R+8, ¢,z), the resultant Foucalt current produces an additive
magnetic field Be in the position of the beam. This field is

approximately expressed by

By = S(t) (-ze + Se)), (4)
u, I (t)
s(t) = =—5— (5)
2Ta
for the case (62 + 22)/a2 << 1. Here, the inverse aspect ratio

a/R has been assumed to be sufficiently smaller than &, whence

the first and the second terms of Eg.2(a) can be approximated as
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Then, Eq.(2) is reduced to
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By using the form
-ife
L(t) = e F(t),
Eq. (6) 1is rewritten as
2 2
L+’ + & £)IF = o, (8)
dt w
where w = Q/4.

The coefficient in the brakets is an increasing function of time
since the net current In increases with time. Therefore, as
time passes, the frequency of the oscillation becomes higher
but the amplitude decreases. This behaviour is analogous to the
oscillation of a pendulum under an increasing gravitational
force. 1In betatron accelerators, the seeding of electrons from
the outside is well operated by using a similar adiabatic shrink
of the amplitude of the betatron oscillation(z), though the
physical origin of the shrink is different.

For further understanding, let's have an analytical solu-

tion of Eq.(8) by choosing the form of f(t) as
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95 f(t) = &t. (9)
w
Then, Eq.(8) becomes
sz 2
— + 0w [l + Et]F = 0.
dt

From the general solution of the above equation, we have the

amplitude
1 3 3
g = e—lwtw(l+£t)2[AHl(l)(k(l+£t)2)+BHl(2)(k(l+£t)2)], (10)
3 3
where k = % %, H(l) and H(Z) are Hankel functions of the first

kind and the second, respectively, and A and B are the constants
to be determined by an initial condition. For the initial condi-
tion

_ ag _ -
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the solution becomes
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In order to have more insight of the change of the amplitude
with time, let's find an approximate form of Eq.{(l1l) under a rea-—

sonable ordering of the parameters. From Egs.(5) and (7) we have

2
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where the form In(t) = Iof(t) has been used. 1In most of cases
Q > v¢/a, whence wz/oc2 is a large quantity. If we use the rise
time of the net current t, k is expressed by
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The rise time 1 is longer than the electron cyclotron period

1/ = 1/(4w) in usual cases, so that tw > 1. It is sufficient
to consider the case k >> 1. For the same reason we can regard
£t = (a2/w2)'(t/1) as a small quantity. Hence, the approximate

form of the solution (11) is found to be
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This shows that the amplitude |%| decreases with time in propor-

tion to (l+£t)_l/4

, whilst the revolution of the beam around
its equilibrium orbit becomes faster as exp(iEmt2/4). From
Egs.(9) and (12) it is evident that the fast rise of the net
current and/or the lower toroidal magnetic field are required
to achieve the fast landing of the beam ring onto the equilibrium
orbit.

If the toroidal magnetic field is not present, the problem
becomes simpler and we can easily show the shrink of the ampli-
tude of the oscillation which occurs around the equilibrium

orbit. This mechanism helps the formation of a beam ring in

an Astron device.



3. CONCLUSIVE REMARKS

A mechanism to form a ring of relativistic electron beam
inside a toroidal conductive chamber has been discussed. It
originates in the increase of the net current, caused by the
fading of the return current. Other mechanisms due to the
energy dissipation of the beam are also helpful to form the
ring in equilibrium. It should be noted that, experimentally,
the efficient trapping of injected beams in toroidal conductive
chambers is well correlated with the smooth rise of the poloidal

magnetic field.l4)
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—MAJOR AXIS OF TORUS

| BEAM RING

Fig.1 cCross-section of torus showing the

coordinates (r,4 , z) and the position
of the beam ring.




