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ABSTRACT

Particle motion within one bounce period ZW/wB is con-

sidered when the cyclotron frequency W is comparable with
Wy - The equation of motion with an approximation is solved
analytically for certain initial values. The analytical
solution thus obtained agrees quite well with numerically
computed results over a wide range of 0 and wg - It is
shown that under some conditions the particle is accelerated

quite efficiently as compared with that in an unmagnetized

plasma.




In an unmagnetized plasma a charged particle trapped in
an electrostatic wave makes an adiabatic motion provided the
amplitude of the wave is unchanged. In a magnetoplasma the
behavior of the particle strongly depends on the angle 6
between the wave vector k and the magnetic field B. For 6
= 0 the particle bounces along B in the potential well while
for 6 = m/2 no particle is trapped even for one bounce
periodl). For 6 between the two limits the motion is quite
complicated as expected.

In this letter we examine particle motion in a coherent

wave during a bounce period essentially when the cyclotron
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resonance k-v - w = 0 is considered. We show that under some

frequency W, "~ the bounce frequency w A Cherenkov type

conditions the particle is accelerated guite efficiently. It will

be also shown how a trapping and a detrapping of a particle

depend on 6, w, and wp-.
We choose B = B(0, 0, 1) and k = k(0, sin6, cosb8),and

the time and lengths are scaled by w-l and k‘l, respectively.

The motion of the particle is governed by

v = wc$ b §/B - (ﬁ/k)mésin(ysine + zcos8 - t) , (1)

where w, = eB/ (mcw) , and wg = keE/(mwz).
Expansion of the force term in the governing equation by
means of Bessel function identity constitutes an elegant

method for investigation of the particle motion in a



]

magnetoplasmaB). This method is effective when W, is larger

than Wp On the contrary, when W~ wB,-the expanded equation
may no more be profitable since the path of resonant partiéle
significantly deviates from the circular orbit. Here we will

try to integrate the equation of motion directly.

The equation (1) gives a momentum conservation along x,

i.e., v, -~ w,y = C;. Using this and putting y + C/w = Y,
and z - (Cl/wc)tane = z, we rewrite Eq.(l) in the form
Ve = 0¥, (2)
© _ 2= 2 .
vy = -0y 51n6w351nw, (3)
V. = -cosBuwsiny (4)
z B !
Y = ysin® + zcos® - t . (5)
For simplicity hereafter we get rid of ' - ' over y and z.

The set of Egs.(2) - (5) yields the following conservation

relation
2 2 _
v /2 - vz/cose - chosw = C2' (6)
or
2 2 2 2 o
{vx + vy +(v, - 1/cos®)“}/2 - wgcosy = C, . (7)

The equation (7) is the energy conservation relation in the



wave frame. The kinetic energy of a particle in the labora-

tory frame is obtained from (6) as W = v2/2 = vi/z + Wl + WZ'

1)

1 (vz - vzo)/cose ’ (8)
Wo = w2 - (9)
2 = wB(cosw coswo) .

As seen in Eq. (7), W, is the potential energy in the wave
frame as well as in the laboratory frame. The quantity Wy
characterizes the energy gain of the particle in the electro-
static wave in the magnetized plasma.

Since it is very difficult to solve Egs.(3) and (4)
analytically we make an approximation of replacing siny by
4w/ﬂ2 which gives the same potential depth as the real one
at y = 0 and ¢y = *m. It will be seen later on that the
resultant set of equations gives a good approximation to the
real motion of trapped particles.

Replacing siny by 4w/w2 and introducing ¢y and n = zcosb
- t in piace of y and z we have instead of (3) and (4)

n
by * (wi + wi)wa = wina ’ (10)

_ 2 2
n, = -cos”6 WV, (11)
where the subscript "a" stands for the approximation and

wg = 4w§/n2. Note that Egs. (10) and (11l) constitute the




equation of motion of a coupled oscillator. Suppose a
particle be in the bottom of the potential in the beginning

and y_ = 0. This statement is equivalent to

]
o
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] =0, n

ao (12)

ao
As for 30 we choose such direction which is parallel to k and
| = 1 since we are thinking of the Cherenkov type resonance

->
v,
E-g/k = 1, This initial value is equivéient to

v_=0, h_ = -sinZe. (13)

Under the initial condition (12) and (13), the set of Egs. (10)

and (11) yields

wa = -tanze(wi/wg)y(sinwlt/wl - sinwzt/wz) , (14)
W = tan29[1 - Y(cosw,t - (w,/w )zcosw t)] (15)
la Y 1 1/%2 2 ’
2 _ 2 - 4 _ 2 2 2..1/2
2w1'2 =T" + [T 4wbwccos 8] ’ (16)
where y = (1 - wi/m%)-l'and r2 - m§+ wi .

The quantity wi/wg is always less than unity. Especially,
when n/4 < 6 < n/2, the relation mi/wg << 1 holds; for a

while we consider this circumstance. Notice that the set of




Egs. (14), (15) and (16) is meaningful as long as |y]| < m,
that is, for particles in the potential well. The expression
(15) implies that if the particle is kept trapped until wyt

2tan26, which becomes infinite as 6 tends to
2

> m, Max Wla

n/2. Since, however, wa is also proportional to tan“6 the
detrapping will easily occur. If theé relation |¢| < 7 holds
for t > t1 = n/wl we call the particle a well-trapped one.
The figure 1 shows critical curves for various 6, above which
particles are well-trapped. The solid lines are obtained by
solving the set of Egs.{3) and (4) numerically and the dotted

lines are given by (14) and (16). We see that the agreement
between them is quite well, which implies that the replacement
of sin ¢ ='?4Lp/1r2 is excellent.

Let us examine orbits and Wl for some parameters above
and below a critical line. Orbits for W, = 0.01 and w, = 5.0
when 6 = 0.357 are given in Fig.2-a and Fig.2-b, respectively.
Orbits of a-1 and of b-1 have parameters above the critical
line and parameters of other orbits lie below the critical
line. The particle of a-2 gets a large acceleration not only

along v, axis but also in v, = V., space, which results in a

Y
nonadiabatic motion shown in Fig.2-a. Moreover, for W, <1,
we have always this type of nonadiabaticity, which is con-
sistent with the condition of appearance of stochasticity
of motion3). On the contrary, the particle of b-2 moves

almost one-dimensionally along the z-axis, the motion seems




to be adiabatic and is very similar to .the one just outside
of a separatrix which separates the trapped region and the
untrapped one in the case of an unmagnetized plasma.

The figure 3 shows the maximum values of Wl/(%vg) = 2Wl.
For a well-trapped particle, the maximum value of v, gives
Max 2Wl. For a detrapped one, v, at-the point of detrapping
(D in Fig.2), where le becomes m, gives Max 2Wl. In this
figure,wc is fixed to 0.05 and 5.0. The solid lines are
obtained by solving Egs. (3) and (4) numerically and the dotted

2

lines are given by Max 2W1 = 2 tan"6 x [1 - y[1 - ﬁzwé(le

tanzele 1/2

l1. This expression is obtained by looking for mlt
for which lwal = m holds in Eq. (14) and substituting it into
Eq. (15). Note that the solid lines and the dotted lines are
very close to each other. An wy at a kink of a curve speci-
fied by certain values of 6 and Wy in Fig.3 is identical with
the value of wy on the critical line of the corresponding §
at the corresponding We in Fig.l. It is important to note
that Max 2Wl or the energy gain is remarkably large. For
example, for 6 = 0.357 the maximum of Max 2W1 exceeds 15
times the initial value.

The Max 2W1 is compared with Max 2W2. It is clear from

< 4w§. When wz < 1, the lower limit of

Max 2W1a is nearly leg/(wzwgsinze) and taking into account

2 2 . . 2
wg 2 w, we see Max 2Wl is domlnant. When We
2

.. . 2 2, 2 .
limit of Max 2Wla is 4mB(l + wB/mc)/51n

'Eq. (9) that Max 2W2

> 1, the lower

8 and we can regard




Max 2Wl dominant in this case, too. It is worth while to

note that in the absence of B we have Max 2Wl = ZwB which is

smaller than Max 2Wl for B § 0.

Let us consider an acceleration of a low energy particle
in the scheme of our theory. Suppose the initial velocity is

zero, i.e., v_ = 0, and wp ~ w_ ~ 1. Also suppose |cos6| <<
i << mg. Using the inital values (12) and, @0 =

ﬁo = -1 instead of (13), we solve (10) and (11) and obtain

1l so that w

-2 -2 .
7 — — = -
20, . 2cos "6 (1 coswlt), and Yy cos 6(51nwlt/wl) x

(wl/wb)z. Since 2W1a and thus obtained are almost equiva-

lent to Egs.(14) and (15), then the critical wg in both cases

must be quite close, and the criterion in Fig.l is approximately
applicable in the present case. Referring to Fig.l we see

that the critical wg is of the order of 1 for w, ~ 1, which

is consistent with the initial assumption We ~ Wy ~ 1. Note
2

. . 2 2
that 2w is scaled by vph/2. Hence,if vph/2 Vtr/2 100

la
eV, a particle of a few 10 eV can be accelerated up to a few
keV in only one bounce period, as seen in Fig.3, where Vir is
the trapping velocity. For example, in the MACH II device4)
in a turbulent heating experiment a low frequency oscillation
with an amplitude of (1 - 2) x 100 V was observed and protons
of a few keV were detected simultaneously. The characteristic
parameters are wg YW, ~ (1 - 10) x 107 rad/sec, Te ~ a few
100 eV and Ti ~ (1 - 2) x 10 eV.

It is important to note that the criterion in Fig.l is




tr’

stated above is an extreme case in the sense that Vo = 0.

applicable for such v, as vah - v,| <'v _; the example

We have found a condition (Fig.1l) under which the energy
gain is appreciable even in a bounce period. This process
is expected to bring about high heating efficiency of plasma
when a large amplitude wave exists. This will also cause
an anomalous initial damping of waves in the magnetoplasma.
The corresponding experiments will fall in the areas of
laser péllet fusion, laser plasma heating, shock heating and
turbulent heating, in which the correlation of waves is not
very good while the amplitude of waves is quite large.
Actually, Cairnss) succeeded to reproduce qualitatively the
result of shock heatings), using a model closely related to
the present theory.
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Fig.1l

Fig.2

Fig.3

Figure Captions

Critical lines for various 6. Above a line the
corresponding particle motion becomes well-trapped
Solid lines are obtained by a numerical calcula-
tion and dotted ones are done by the approximate
solutions (14) and (16).

Orbits in v, - 2 plane. 0 = 0.357. Particles
start at the point S. The a-1 (wy = 0.14) and
b-1 (wB = 1.0) are well-trapped ones. The a-2
(wB = 0.12) and b-2 (wB = 0.8) detrap at D. The
point A represents the position of the detrapped
particle (a-2 in Fig.2-a, b-2 in Fig.2-b) at the
end of one bounce period of the well-trapped
particle (a-1 in Fig.2-a, b-1l in Fig.2-b).

Max 2W1 VS wg. The Wy is fixed. Underlined
quantities belong to w, = 5.0 and others do to
w, = 0.05. Solid lines are given by a numerical

calculation and dotted lines are done by the

approximate solutions (14) - (16).
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