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Abstract

Kinetic theory of the self-modulation of a quasi-monochro-
matic ordinary wave propagating across an external magnetic
field is presented. Explicit expressions of the dispersion
and the nonlinear coupling coefficients are given for a
Maxwellian plasma. In the limit of zero-temperature, a
Karpman-Kruskal linear stability of the O-mode envelop is

discussed.



§1. Introduction

The linear stability of electromagnetic waves propagating
across an external magnetic field Eo has been extensively studied by
a number of authors (Dnestrovskii et al 1961, Hamasaki 1968,
Davidson and Wu 1970, Gaffey et al 1972, 73, 75). They found
that instabilities may exist only in high-B8 plasmas with a
large temperature anisotropy. In their recent work, Freund
and Wu (1976) have shown that low-B plasmas can also be |
unstable if an anisotropic population of hot relativistic
electrons is added to a Maxweilian electron distribution.

With regards the nonlinear propagation of finite-amplitude
linear waves in dispersive media, much attention has been
paid during a last decade on the modﬁlational instability of
electromagnetic waves in plasmas. Self-modulation of the
ion acoustic waves is governed either by a nonlinear Schrédinger
(NLS) equation or by a Korteweg-de Vries (KdV) equation
according as their wave-length is short or long (Shimizu and
Ichikawa 1972). Both of them have already been experimentally
confirmed (Watanabe 1976, Ikezi 1973). Finite-amplitude
electron plasma waves are known to be described by the NLS
equation (Zakharov 1972, Ichikawa et al 1972) which includes
a nonlinear nonlocal term representing a wave-particle resonant
interaction at the group velocity (Ichikawa and Taniuti 1973,
Ichikawa et al 1973). Nonlinear propagation of whistlers
(Hasegawa 1972) has also been shown to obey the NLS equation,
which involves the nonlinear nonlocal term when the effect

of nonlinear Landau damping is taken into account (Suzuki and



Ichikawa 1973, Kako et al 1973). As for electromagnetic
ordinary and extraordinary (O and X) modes propagating

across ﬁo' only the hydrodynamic theories are available (Kako
1972, Furutani 1975).

The aim of this paper is then two-fold: (1) to obtain
explicitly the dispersion and the nonlinear coupling coeffi-
cients of a NLS equation for the O-mode envelop and thereby
(2) to discuss its modulational instability. The paper is
organized thus: within the framework of the reductive pertur-
bation technique, explicit evaluation of the dispersion
coefficient is given in §2 and that of the nonlinear coupling
coefficient in §3. With the aid of their limiting expressions
(cold electron plasma), a linear stability based on the Karpman-
Kruskal criterion is briefly discussed in §4. 1In the concluding
remark, we elucidate a structural difference of the noglinear
coupling coefficient between the whistler (cyclotron wave)

and the O-mode.



§2. Reductive Perturbation Method for Ordinary Waves

A quasi-monobhromatic electromagnetic wave is assumed to
propagate across an external magnetic field ﬁo, directed to
the z-axis, in a collision-free two-component plasma. When
all quantities vary in the x-direction, the Vlasov-Maxwell

equations are reduced to

2 3 _%a, 0 1 33, 9 Ca 3.2
58 * Vx 3% ﬁg(5§<p+ c 5?3 ¥ T aclVr 3XZT av
- R O I Dz T34y =
Vy 3% Bp' 3 T) Weq 371 Fy iVit) = 0 (1)
A R
32 1 3?2 _ 4w > T
Gz ~ez e ) = - ZeaIdV()J‘a @
. (o] o 1
eaBo
where y is the azimuthal angle in velocity space amiu%a= —~—
a

is the cyclotron frequency of the a-species. The suffix

T denotes a transverse component relative to the x—axis.f?a,

R and ¢ are a velocity distribution function, a vector potential
and a scalar potential, respectively. Furthermorelz and ¢ are

subject to the Lorentz condition

d 9 - »
3 a0 (3)

Q-

In view of applying the reductive perturbation method to

the set (1) ~ (3), we introduce the stretched variables

o= et, n= exand ¢ = ¢e?x

and expand the distribution function and the electromagnetic

potentials into the following double series



‘?u = Fa(e) + ¥ M % féné (%,o,n,c;k,m)
n=1 g==c0 !
x explif (kx - wt)] (4)
x= £ e % Xén)(c,n,c;k,w) (5)
n=1 g==0

x exp[if (kx - wt)]

where X stands for Ax' Ay' Az and ¢. The unperturbed plasma

is characterized by Fa(g) which, axially symmetric about the
z—-axis, is assumed to be an even function of v, - The reality

e . m _ (n)* (n) _ ((n)*
condition requires faf-ﬁ— fa,l and X_,° = X,
the asterisk denotes the complex conjugate.

, Where

After having expanded and collected terms of the n-th
order in €, we can obtain a set of coupled equations for a
given pair (n,l). Since we do not find it interesting to
write them down in a general form, we content ourselves to
present a step-by-step analysis which, though analogous to
the previous kinetic treatment of whistlers (Kako et al 1973),
makes it clear that for the 0-mode (as well as the X-mode)
the second-order second-harmonic component does not vanish.
2-1 Linear Dispersion relation n=|2|=1

Taking account of (3), we obtain from (1)

(1) _ . w x .2 .
dl(t.b)f(l’1 =15, A" L Fa, dz(w)

1H




where the vector A and the vectorial operator L are defined

as
A = - 2 A E 2 =
Ax = (1 N“)A_., A Ay and AZ Az (7a)
= _9_ =9 _k 9 =1 - 9
Ly = v, ' Ly avy w oY and L w Hu-kv) 55
b kv, =2} (7b)
zZ oV
x
' *
Now introducing ng(w,w') = Gy (W) Gop (') with
sz(¢) = expfif (kv,siny - ww)/wca] , we obta{n
(1) _ . w 2(1).3
f(x,l = i B, Al Pa(l) (8)

v
> _ > ' '
where Pa(Z) = 3a(2k, v) = J dy ng(¢r¢ )f Fa . Unless

specified, ? denotes ga(l) in the sequel. Substitution of

o
(8) into the first-order version of (2) and (3) yields

Bk, w-21) =0 (9)

where the propagation tensor'ﬁ(k,w) is defined by

ﬁfk,w) = Exx exy Exz
-N € (10
fyx  Fyy " Cyz )
£ £ € =N?
ZX zy zz

in which

€op = 6vu+ Xyu (1la)
m2
- po >
Xy i 2 ~B—a;; f av. v, Pa,u (11b)



-+ .
and N is the refractive index. Since Fu(v) is assumed to be

an even function of vz, Pa 2 is then odd and we have
’

€ e =e_=¢_ _=0. The determinant of B(k,w) gives rise to
XZ ZX Yz ZzZY

two dispersion relations

= -— 2 - = -
det Dx(k,w) = exx(eyy N<) € eyx 0 X-~-mode (12)
and
= = - 2 = -
Q)(k,w) = Dzz ezz N 0 O -mode (13)

Since we are concerned with the 0-mode in the present article,

: (1) _ (1) _ . . .
det'ﬁk(k,w) # 0, leading to Ax,l = Ay 1= 0. With this in
mind, (8) is reduced to

kv

(1) _ Sa (1) 3 . KV
fa,l " m.c Az,l (8v Fot 1% Pa,x) (14)

o Z co.

The dispersion relation turns out to be

u“2

Dy(k,w) =1 - N> - 3 —w§9 + Ay =0 (15)
2 a
“po _k >
where A__ =1i L ——g— — I dv v? P is a portion of
Z22Z a W Wog z o, X

the permittivity which accounts for the thermal effect of
constituent particles. The dispersion characteristics of

the 0-mode in a hot magnetoplasma have already been completely
studied (see, for instance, Dnestrovskii et al 1961, Clemmow

& Dougherty 1969) and explicit expressions for the components

of the dielectric tensor are also well known for a Maxwellian
plasma (e.g., Furutani & Kalman 1965), which we do not reproduce
here.

2-2 Second-order "slow" mode n=2, =0

)

’

Setting n=2 and =0 in (1), is found to obey the

equation



(2) _ _. W (l) (1)
dg(w)fa'o = —i Bo z 1 Lz fa,l + c.c. (16)
which is integrated to give
(2) _
fOl 0o~ H + K (17)

where

w (k v.)“ ¢y
H = E%%‘A(l)lz{l (kv, P )+ —z [ ay’ V? P}
z I

X mca 9 X a,x
and (17.a)
2 ) 2 M
W 2 kv_ v ;
_ _Ca (1) 2 ] _ s z 2z 98 0, ay
K= 5,2 IAz,lI (3 vi Fo = 1 Woy Vi 3Vy Bw{wL 27 Fa,x H
(17.b)

and c.c. denotes the complex conjugate. Detailed derivation
of K is given in Appendix A. Inserting now fézé
4

n=2 and =0, we can show that it automatically satisfies
3(2) 62)

2-3 Compatibility Condition n=2, 2=1

into (2) with

Turning to the components with %=1, we obtain from (1)

(2) _ 1o 2(2), 1,3 3 _ 2 (1)
4, W £, o liwA) i Fo * 835 35 —E){wAz 1L,F
1 P P] (1)
Y e, 35 ¥ Vx 30 fa,1 (18)

To solve (18) which, though similar to (5), now contains
the source terms (second and third terms of the right-hand
side) depending on ¥ through v, and 3/3Vx, the following

identities are useful

Y
1] | ] — 3 a
I dy Gk(w'w )Pa,x(k’w ) =1 Yoo Jo Pa,x (19)
de vl G ( ) (k 3
vV wrwv P V') = -1 w
x k o, X co. akPa,x



Substitution into (18) of f;li given by (8) yields

(l)

(2) 1
£4,1 = B, z, 1F0,x K- v) }]

> >
-Pa(k,v) - v (7= — - I 3 ——){kA

(20)

which then gives, in view of (16), the current density associated

with £(2)
a,l
“4mc 2(2)_ 2(2) 31 9 3 _ 3 9 (1)
=5 3, < A%+ iz 55 (55 3o P ak){m (Ax,,,! b }
; (21)
A i
where Z is a unit vector directed to the positive z—a?is.
Correspondingly an equation obtained from (2) becomes
(2) ;_ 9 3 _ 9 2 (1) amc +(2) _
(22)

In the light of (21), the x- and y- components of (22) gives

Bk,w) - A2 i =0 ,
. . . . (2) _ ,(2) _
which gives rise to the relations %{ 1= AY 1= 0, where the
’ 14

subscript L+ stands for the components normal to the z-axis.

Now the z-component of (22) yields

_n2yaf2) . i ,09 93 _ 93 93 "
(Ezz N )Az,l + wz(ao oW an Bk)[m (1+AX N )Az,l
(23)

()

We then see that the coefficient of A drops out by virture

of the dispersion relation and that those of BA(l)/Bo and
(l)/an can be easily identified as 1 BDO/Bw and -i BDO/Bk,
respectively, by direct differentiation of (15). From this

it follows



(1) _
- ) Az,l =0 (24)

where vg =.-(8D0/8k)/(8D0/aw) is the group velocity of an

envelop of linear carriers. The above relation, called

compatibility condition, imposes a (n,o) dependence of Az(i)
14

which is determined as a general solution to (24)

a, Pwmo =2 m-ve o (25)

2-4 Second harmonic of the second order n=2, =2
The second harmonic (|%2]|=2) of the second order is

governed by

(2) _ . w 2 .7 (1) (1)
dz(w)fa’2—180 (2 ZZLFQ+A'1 L, £,,1 ) (26)

which formally gives

(2) _ . w .3(2) A2V, .
fa,2 i Bo [2A2 P (2) + 1 0 z,1 I dy GZk(w,w )LzPa z
(27)
Now, setting n=2=2 in (2), we obtain the equation
a(1 - Nz)i’\.@ ang 3 -0
which is separable into two parts. The one is
(2) _

DO(Zk’Zw)Az,Z =0 (28a)
from which Az(g) = 0 by virtue of the fact that Do(2k,2w)#0,
when Do(k,w) = 0. The other is

2
B (2k,2w) - A‘Z) = & 2l %k, w (28b)
0 fz,1



where the j component of C is defined by

2

w v
=1y _Pe{ 4y : \
Cj = K g by f dv vj f dy G2k(w,¢ )LzPa,z(l) (29)

It is now obvious that the second harmonic is polarized in

the x-y plane and, as (28b) suggests, can be written as

(2) _ k ,(1)?
4,2 BO z,1

T (k,w) (30)

Explicit expressions of T are given in appendix B.
2-5 Fundamental Mode of the third order n=3, lfl
To this order we only need to consider the fundamental

mode. Setting n=3 and 2=1 in (1), we obtain

f(3) =s. +5 (31)

d (\P) L NL

in which the linear source term SL is given by

. w 3(3) _1 (2 (2)
s, =i 55 A .3 F, O[{ A (an %1
3. (1), 0 ) (2) (1), 9
a_ch,l)}’a‘xT; F v ‘an z,1 8cAz 1)av F,
1 .9 _(2) £(2) £ (1)
+ E;;[EE fa 1 (Bn 0,1l + 8; a, 1)] (32)

and the nonlinear term SNL by

LW . 3(2) 2 (L (D* _(2)
Sy = 1 B, (2 3,%-L £,1 TR L, £y 2
(l) (2)

Therefore a solution to (31) should be a superposition of two

terms

(3) (3)L (3)NL
foo1 = %1 i

- 10 -



(3)L (3)NL .
where fa,l and fa,l correspond to SL and SNL , respectively.

Consider first the linear term. Upon substituting (14) and

(26) into (31), the linear part of (31) is readily integrated

to give
(L _ 1. 2(3).3 __ .3 3 _ 3 3. (2
fa,l B ﬁs[lwxl Pa vz{(ao dw _ on ak)(Az,lkPa,x)
_3 a8 100 3 _ 3 0,0
5z 22,1 3k X Po,x) T 3035 35 T 3 3K 2 (B[ 1KP,, x 1]
(34)
where we have made use of the identities
l’) a w 2
' ') — ='_.Eg 9
J v’ Gy b,y )awPa,x 1 =5 30? Po,x (35a)
q)cw:'c;(xpw')(—a—-v'—'S’-)P - iw < p
, k7! ok X Jdw Ta,x Tco dwdk Ta,x
and , (35b)
] w 2
- v ' = -3 S 3
[ A’ G WV 3x Py,x = "1 3 %7 Py, x
(35¢)
The linear part of the current density g{3)L is then
given by
arc _(3)L _ (3) , 4,98 3 _ 3 3, (2)
w2 Jl,z = Xzg Az,l * 2735 30 N %) (@ szzAz,lx
CiBay A _ 1 8 3 3 3, (1)
1 ﬁfozzac Az,l Zwi(ao ow an 3k) (mszzAz,l)

Substitution of this expression into the corresponding

equation (2) yields

a3, 1,9 3 3 d,,, 2, , N 32 1 & (1)
(Cpr NIRY * 0rlas 30 ~ 3y 30 10T AR N Y +G7 5o - 5r 300B, 1

R B 3., (1) 1 3 2 9 98,2, 2 (1)
+ < - 2 - (L - 2 °
1 Bk(N AXzz)az;Az,l 2w7(80 ow an Bk) (w szzAz,l)
- - dme oL (37)

_ll_



(3)NL

where the nonlinear current J has no compact expression

z,1
as (36). Remark in (37) that the coefficient of A(3ivvanishes
due to the linear dispersion. That of Aézi has been shown

previously to vanish by virtue of the compatibility condition.
Finally the coefficient of aAéli/a; can be shown to be equal
7

to -BDO/Bk. From these considerations, (37) is reduced to

1,9 9 _ 9 9,2 (1) _ 4mc _(3)NL
A,y + 5 ) "Dg Az,l— Tw? Jz,l

(38)

This equation can be simplified farther by introducing a set

of new variables &=n -vgo and T=§/Vg. The result is

(l) -1 _(3)NL

) 1 ' _ 4mc, d
( 3T + > Vg QEZ)A = —-—2-( D ) JZ,l (39)
where use has been made of the identity
-y ' 2 = 2 3% 32 32
V' 3w Po = Vg 3wz * 2Vg swek * 32’ Do (40)
(3)NL
§3. Calculation of the Nonlinear Current Density J 1
l
(3)NL . .
In order to evaluate J 1+ we substitute into (33)
l
. (1) (2) (2) 2(2)
the expressions of fa,l ’ fa 0’ fa, and A, 2 given,

respectively, by (14), (17), (27) and (30), and obtain

1 o
(3)NL _ . w . +(2) (1)* . w (1)*
fa,l =1t BO J dy G (v, 9") [2A 2 L fa 1 lB0 Az,le
y! '
. +(2), w (1) " ] LU
{2A2 P (2) + i Eg 2,1 [ dy G2k(w ) )sza,z}
+ Z(],h)I Lz f(zt)) ] (41)

- 12 -



Denote by SO(U=A,B,C &D) the part of (4nc/w2)J(3)NL correspond-

z,1

ing to fo' where fA' £ fC and fD represent, respectively,

BI
the first, second, third and fourth terms in the square

bracket of (41). Then, after simple algebra, we get

A B Y,ZPa:Y(l)}

.
_ LW
s, = i2 a)* 5y P2 fdv[ w{A(z) (1) + A
0 z,1 o Mo a,x

k v? ,
- iy —Z2 f ap' 6 (vy) A2 v al?) el (1)
W X,2 3V % V.2 v y o,X
(kv )? 1]
, 2’ ,(2) . by 3 ¥
ti Ay f av' G (b, p') T Py L (1)) (42.a)
2 (1) * (2)
S m Al n——R- | #-iaP) e, (@ - Pa,x(l” +
o o ) w
kv
a(2) - z (2)p
y 2 (P, (2) Pa’y(l)ﬂ + ., [ ay'G, (v, ¥') 3 {Ax 2Pa, < (2)
(2) (42.b)
+ A% Py g (2]
2
= - k (1) 2 5 (1) “pa [ >, _
S¢ =5, e L W1 2 HES? f avliv (2P, (1) - P (2)}

w 9
; v 2 ] ] + P
k z [ dy Gk(w’ v )av ‘{3Pa,x(l) a,x(z)}

2 w ] ] 9 '(sz) ’ ]
- kv, I ay' G, (W 9" )5 Pa,x(l) - i de
X co

X

N L oy D
G (0¥ g [dw Gax V' ¥ )y By (D] (420)

and

2
= _k A1) 2,(1) Ypa [ 2o
Sp = ESTIAzjll Azl i n, w2 dvizie Py, x (1) +

v 3 4 3
2 vy Y9 - [ ] 1
3kv, J WGy B FuiPy (D) kvéf WG W v gy Py, x )
(kV72)2 3 lb' P
+ i—-2 —J dw'Gk(w,w')§;7j dy" EGW{Pa x(1)+P; X(l)}
X ! ’

w
ca X

a,X

212 9 3 w 9
+ (sz’f ap'Gy (y,p’ )Bvx 30 lkos 3vT Po,x (12} (420

_13_



where the bracket <P> means an angular average

1 27
< P >= 5;-[0 P(w)dw

By virtue of (30), we can now put (4ﬂc/w2)Jé3iNL into the form
’

4tc _(3)NL _ NL (1) 2, (1)
w Jz,l = d |a z, ll Az,l (43)
where qNL is the nonlinear coupling coefficient which can be

written as

NL I IT
g9 =gq9 +q

Obviously qI comes from SA + SB which involves the polariza-
tion vector T and represents the coupling between the second-

(2)

order second-harmonic KJ:Z and the fundamental. With regards
qII, it represents all other couplings between the slow mode

and the fundamental. Their explicit expressions are

2
I _ k mpa > s
T =250 5 [a0 [ -iotr ez, e 2
| Y
2 _W ' '
w vt o [ayre o, S PL (D 4B, (2)

) d
+ Fy (BV' x(l) + 5;7; Pa,x(z))}
(k v,)* ' 9 * '
- __B;;— Fy J dy Gk(w,w ) SE— Pa (1) 1] | (44a)
and
IT_ k2 “Ea Ca 2 (Y
g = 1—30_2 a o2 J avili —k— o, X (2)+vz J dy'G k(w v' )BV}L ,x(l)
j WG Wy )T (BR (D) TR (2))
k v, ] P
i J dy’ G (y,p' ) f dw"{GZk(w w")——w Pa'x(l)
Cco X
+ 2 (p (1) +p* (D)}mv“fﬂi' Wop') =2 Ji[“ 9 p (1)>1)
vy OsX a,x z v Gk vy avé dw'kv, v, 0,x
(44b)

- 14 -



Finally we obtain from (39) and (43) the NLS equation which reads

.09 .1, 3% (1) _ =1 NL,,(1)2,(1) _
(i T + 2vgv 352)Az,l (BDO/Bw) q lAz,l‘ Az,l =0

(45)

A solution to (45) has been extensively studied by a number
of authors in the past (e.g., Zakharov and Shabat 1971) and
may be subject to the modulational instability whenever the
product of two coefficients, vg'/2 and —(Z)DO/'auo)-l qNL,

becomes negative.

§4. Stability of the O-mode envelop in a cold electron plasma
In order to determine a frequency range over which the
O-mode envelop can be stable, explicit expressions for the
dispersion coefficient and the nonlinear coupling coefficient
are réquired. .Their derivation involving thermal correction
up to first order in A , with A = (kaa/wca)2 , is given in

some detail in Appendices B and C.

(a) Nonlinear coupling coefficient The results are
R .
1 k2 a 3(2vg2-1) i
Q= 25— I 7 (2T {1+) ——&—=" ¢ = T
Br? o va(4va 1) x @ (\)az-l)2 Vo ¥
13va2-7
x{1 +>\a ——T‘-—z}] (46a)
(v, -1)
and
IT k2 Ry 1 6vg°-l
q == 2 B 2 {1 + fla —_— } (46b)
0 a v;(4va2-1) (v_2-17

- 15 -



(1)2

with Ra = 5722 and Vy = m/mca. Now, since high-frequency
ca

O-mode can not be affected by the ion dynamics, we content
ourselves to consider only the electron contribution to the

>
polarization vector I , the two components of which are given

as
2
r = - % 3R {1+ % A (66v*-62v2+11) }
8v? (4v2-1) (4v2-1) (v2-1)2 :
(47a)
ro=3 R (1 + A {-(5v%-2)R
b4 4v2 (4v2-1) (4v2-1) (v2-1)2
+ 2(7v2%2-4) (4v?-1)1}} (47b)
where
- R [3R-4(3v2-1)+ F22{2R- (5v2-1)}] (47¢)
4v?2 (4v2-1) v

Next, although thermal correction may be important at the
immediate vicinity of a pseudo-resonance at v?=1 (in any way,
there is no cyclotron resonance when k 1 ﬁo) and at v? = 1/4
(resonance at the subharmonic), it is legitimate to neglect
these resonant effects over nearly all frequency ranges whenever

Aa << 1. Substitution of (47) into (46) then yields

N k? R
T = - % =5 (48)
0 v2(v?-v,?)
where Vo l= % + % . On the other hand, since kvé/vg=l—(vg/c)2
with vg=(w/k)N2, we have
I V) _ a2
vg' = g NO(L - N?) (49)

which is non-negative. Finally, by virtue of (48) and (49),

the NLS equation (45) can be put into the form

- 16 -



92 (1)

(i%"‘PW) a (l)lz (1) = 0 (50)

+ gla a

where the new variables u = wt and v = ki are introduced in
(45) and a(l)=kAé}i/Bo. Also have we defined p=N? (1-N?)/2 and
and q=% CTTG%T:UT)‘ We can then see that the stability of‘the
O-mode envelop depends solely on the sign of g, because of the
positiveness of p. Fig.(a), (b), (c¢) and (d) show the qualita-
tive behaviours of p and q as a function of v?. The p curve
starts from zero at v=R(p>0), takes a maximum value 1/8 at

v2 =2R, irrespective of R, and tends to 0 as v?+= . The q
curve has a minimum value R/v," at v?=v,2/2 and presents two
asymptotes v2=0 and v,. Consequently the following four cases:
are envisaged:

a) vp2 <R. 1In this case p and q are of the opposite sign and
the envelop is modulationally unstable.

b) R<vy2?<2R. Qualitatively there exists a frequency range
R<v?<v,y2?, over which p and q are of the same sign and thus the
envelop is stable. Owing to the fact that g is much larger
than p, however, we can hardly expect to observe a stable
formation of the wave packet, in that the steepening effect
(nonlinearity) will overcome the broadening effect (dispersion)
of the profile.

c) R<v 2/2<2R and d) 2R<vy2/2 In these cases, too, p can
not be of the same order as g, though they are of the same sign.
This is because we have no real solution v? to the equation
pP=9, since

1/2

vZ = R= [-{2(R = vg2) + 1}+{ (2R - 2v,2%+1)? - 8R} 1/4 ,

- 17 -



where v? is a solution of p=d; is always negative.

To conclude this section, we may give a rather pessimistic
prediction that, although there is a frequency range over which
the O-mode envelop is stable against modulational isntabilities,
the envelop will quickly collapse due to the predominant
steepening effect (p <<q). In this respect it is an interest-
ing problem to investigate quantitatively a relationship between
the ratio p/q (or its reciprocal) and a "life time" of the

envelop.

§5. Concluding discussions

The NLS equation describing the nonlinear modulation of
the O-mode has been‘expiicitly established within the framework
of the well-known reductive perturbation technique and the
limiting expressions of the dispersion and the nonlinear coupl-
ing coefficients for a cold electron plasma are derived. It
is noteworthy to mention that a structure of the nonlinear
couping coefficient of the NLS equation for the O-mode is
in some way different from that for the whistler. While in
the case of whistlers the second-order second-harmonic components
are not induced, the components K}?; transverse toiﬂ, are
excited in the present case and give an additional contribution
to the nonlinear coupling coefficient. With regards the

62)’ emphasis should be placed on the structural

difference of governing equations which determine fézé- In
14

"slow" mode K

the whistler case (Kako et al 1973) those equations are written

as

+ £ =0 (51)
a



I T E ) N Bye(2) _ oy
and wca?ﬁ fm’0 + (30 + v, an)fa,o = Y-independent terms
+ periodic terms in ¢ (52)
from which they had deduced
(Ji + v Ji) f(z) = ¥ - independent terms (53)
:To] Z 9N a,0 .

In the case of the O-mode we have obtained a couple of

equations

2 f(Z) = aperiodic terms in y - o (54)

oy “a,0
and

_ 3 £(3) 3 A, (2) _ - o

W o fa,O + (ao + v Bn)fa,o (periodic + aperiodic)
terms in ¢ , (55)

from which it follows

3 3,602 | Loorioat -

(30 + Vo an)fa,o aperiodic terms in ¥ (56)

since f;?é is required to be periodic in ¥. A non-zero
integration constant, resulting from the integration of (54),
has been uniquely determined by the procedure of taking an
angular average of (56).

Also have we to notice that, in the previous paper written
by one of us (Y.F.), there was an error of having completely
neglected the contribution of Kf?; to qNL. In the forthcoming
paper we shall deal with the NLS equation for the extraordinary

mode.

The hospitality extended to one of us (Y.F.), during his
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stay in summer 1976, by the Laboratoire de physique des plasmas,
Université Paris-Sud (Orsay), where final part of this work
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Appendix A

Determination on the Integration Constant K.

When we integrate (16), we have to take care of an
integration constant, which we denote by K. Note that K can
not be set a priori equal to zero. The reason in that, on the
one hand, it gives a non-zero contribution to the nonlinear
coupling coefficient g [see (43b) and (43c)] and, on the other
é2)=p§2)=0_

hand, it indeed ensures a posteriori the identities 3

In order to determine K, we first write

(2) _ _
fa,O = H(y) + K (A-1)

where H(y), dependent of ¢, is given by (17a) of the text and

then invoke an equation for fé3% which reads
. 14
_ 9 (3) 9 9 (2) _ -
Yoo I fa,o + (35 * Vg Bn) fa,o = R (A=2)
where
R= 9 o2 2,12 g, 2,p, Japd,, 0,
m_'on *° v c 30 0 3%’ o m_C o0 x an
o X o
(L)* 9 _ 3 L(L)* 3 (L) _ . ,(2) (1) *
Az,l sz Ve an Az,l avx} fa,l l""Az,l sza,l
. (1) * (2) -
+ 1wAz,1 sza,l + c.c] (A-3)

Now we take the angular average of (A2) through the operation

1 27
< T(P)> = o7 [ ayT (y)

0

Recalling that fé3é is a periodic function of y and that
14
<vXK> = K<vx> = 0, we obtain immediately
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Appendix B

Polarization Vector Associated with the second Harmonic

The amplitude of the second harmonic of the second order,
given by (28b), can be explicitly evaluated in terms of the
polarization vector T defined through (30). Since T is colinear
with 61, it is sufficient to calculate the latter by direct
substitution into (29) of the explicit expressions of LZ and

Pa 2 defined, respectively, by (7) and (9), i.e., we have
’

2
- _ 1 w o S u) . , , 3
C, = % X —E'—n an fdv V,LJ dy G2k(111,11) ) { (w—kv X)_a_\—r_
a o ca z
+ kv, gy} X Yapre (' 9" {(wmkv ") s + kv x2—,} F
2 9v!' ] “k v,y w VX 3v VZ T o
bl 2 N
(B1)

The term associated with the operator (w-kv'x)a/avZ vanishes

upon integration by parts over v, We then obtain

_ 1 wpa 2 '* v ' ' 9
S i Jdv Vz fo W7 G 0¥
o o co. X
‘pl
xf AP Gy (¥ ™) { (w=kv" 3%— + kv g} B
X
__]_-Z_uiéﬂ_ d{;v 3{_1 _a_._wdvG ( I)LF
T4 o PaWg z 4 Yea v, ¥ Gy L2 avé o
-lpl
J ay' sz(q; P! ) J dw"Gk(w',w")cosw" -a—%I Fa}
w? v_?
=1 __"pa T3 - _Z_ ' 1y_9 _
- 4 ca[lwcaJ dv v, (1 aaZ)[ ay G2k(w’w )Sv o

n
2 w ' ] 0 w' L] "
[ a¥ ¥, v,? [Tavtey woughe [T e,
X

> » (¥ v
- ﬁ z ———Eﬁ— [a%, 3. dw'GZk(w.w')5%;[ SURIIURRT
(B2)
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where use has been made of the identity:
- ’ LI P
(w kvx )Gk(w,w ) lwca

. :
M Gk(w'wll and we have assumeq Fa
. > >

to be Maxwellian. Also F (v,) = f avyF (v,, v,) .

Finally, successive integration over ", ¢' and 34 yields

2

w oo 2 oo
<+ 4<xmwca Xu ] 2Aa %, m=-o (va-m)(Zva-l-m)
£+m

2y Tem (2

x )12 3, ({3 (W= 9 (0 w3 (03 w1,

- T Q
1J2+m(2u)

(B3)

= 2 = 2_ 3
where Aa— (k aa/wca) and Vo w/wca and a, Ta/ma is the
squared thermal velocity. The dash denotes the derivative with

respect to the argument. Thus we obtain for ¥

F =8, 2k, 20718, (B4)

where ‘Bx-l is the inverse matrix of Bx.
In the small Aa limit, we can expand the Bessel functions

in ascending series of y and integrate. The resulting expresions,

correct to first order in Aa’ are

R

2-
c. =-1y @ (14 3(2v97-1), (B5)
X 2 v (4v_<-1) 2 2
a o (va -1)
and )
. R_ 2(7v_ “-4)
c, = -z- I — “2 {1+ 2, ——-—‘:——-—-;} (B6)
a va(4va -1) v, -1)
- .2 2
Ry = wpa/wca

of which the limiting formulae for a cold plasma are quoted

in the text. Finally we evaluate T, and Fy up to first order
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“in Aa. We first need the explicit expressions for the components

. © [ nd
of the propagation tensor DX(Z) = Dx(2k, 2w)

R
3
D.. e (2) =1-3 —2 (1 + 2 ) (B7)
XX - oxx a 4v_2-1 @ y2y *
o o
Ra 6 *
D = 2) = -i % 1+ =D (2
Xy Xy (2] a 2v (4v 2-1) 1 vaz—l) yx‘?)
(B8)
and
D = 2) - N? = - 2
vy eyy( ) syy(Z) ezz( )
R 3(5v_2%2-2)
=z a (3v,°-1+1 — % (B9)
a  v2(4v_%-1) v _2-1
a (o] o

Now, since the O-mode is propagative over the frequency range
w 2 wpe , the ion dynamics can be neglected. The sum over the
particle species is delected and thus we only give the electron

contributions to Fx and Fy which read

=1 -
I, =5 (D, Cy = Dy C)

X Yy "X xy Y
2
- - % 3R 1+ % A (66v*-62v2+11) }
8v?3(4v2-1) (4v2-1) (v2-1)?2
(B10)
r =i (-p _c +D_C)
Yy D YyX X XX Yy
= % R {1+ A [- (5v2-2) R+2 (7v2-4) (4v2-1)1}
4v2? (4v2-1) (4v2-1) (v3-1)?2
) (B11)
where
= det D.(2) =D..D__ -D_ D
D = det DX ) = xx Pyy xy Dyz
= - R [3R - 4(3v2-1)+ —222(2R-(5v2-2)}]
4v? (4v2%-1) vZ2-1
(B12)
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Appendix C
Evaluation of qNL'for a Maxwellian Plasma

When the distribution function Fa(z) is Maxwellian, messy
expressions (44a) and (44b) can be considerably simplified.
First we can show that the last term of qI identically vanishes.
To prove this, suffice it to carry out the y'-integration.

The result is
] P} * 1 ' . *
[ Ay’ Gy (b, ¥') Fm P, (1) = (B (1) ¥ R, (1)}

We then integrate over v to have

I ())
v v 2 =1 A) I )
[ dav v, Pa,x(l) = -1 Vo exp ( Ol)n von

where In(ka) is the modified Bessel function and parameters

. : . 2
Vi éndlﬁxare defined in Appendix B. Thus, J dy v, {Pa,x(l)
+ c.c.} = 0. Next, terms involving vz“ in qII can be shown
to be at least of the order of A&{ In the smallA limit where
we restrict ourselves to the first-order correction in Aa ’

we can delete them completely. Then, in terms of the following

seven integrals

w w
=3 _CO > =-i _CQ v
al— i X Idv Pa,x(z) bl i X Idv Pa,y(z)
=|av 2¢d'c( ')—-@—P (2), b.=|av zwd'G( ')—B-P (2
ax= Ve v x vov av£ a,x 27 PT|V Y, v k L BVQ a,y )v
Y P 2wd'G "2 p* =|av 2wd'G n2_p*
a,=[dv v, ] k(w, /] )3v£ Pa,x(l), b3- v Vz‘ P k(w,w )a%f Pa'x(l)

> v 9
a,= dv v 2 aY'G,. (Y,P")5—, P (1)
4 z 2k 3v£ a,x

’

the nonlinear coupling coefficient qI and qII are given as
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%
q =2 > L {(a,+a.+a_ )T+ (b,+b_+b_)T_1}
BO o ¥ Yeq 1 72 "3 "x 172 "3y
I1 k2 oy
= - — P& -
B,Z L T (A1t a,)

After tedious calculations we obtain to first order in Aa’

the following expressions

a.= 2 3

_ 3 _ i 6
1= v =T 527 by= s7avz=1) 1t vz=1)
o o o 0 ] o
a=h oy 343-2va%) . b=-i) . 3(3vq>-2)
- 2. - - -— 2
27 a VZ-I) (4v2-1) (v2-4) 2 o v (VZ-1) (4vZ-1) (V2 2)
3 (vy2-3) . 2 (2vg?-5)
a.=A 5 = b.,=iA - —
3 a(va 1)%va 4) _ ’ 3 o va(vé 1)2(v& 4)
A = 6V, 2+1

= - -
4 "a (va 1)2(4vé 1)

Collecting them, we find

2 R 3(2v2-1) r 13v _2%-7
qi=2 Bkz > & [ar (14, ————%———Q+131{1+ e
O o va(4va -1) (va -1) o (va -1)
and
2 R A 6v_2-5
ok, — 22— 1+ 7 =0
0 av, (4v, -1) v, =17
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Figure Captions

Variation of the dispersion coefficient p and of the
nonlinear coupling coefficient g as a function of v?. Four
different cases (a) v02 <R, (b) R < v02 < 2R, (c) 2R < v02
and (d) 2R < v02/2, according to a magnitude of R, are shown

qualitatively.
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