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Abstract

The nonlinear behavior of ion-acoustic waves with rather
short wave-length,leegl, is investigated by computer sumulations.
It is observed that the nonlinear frequency 'shift is negative »
and is proportional to square root of the initial wave
amplitude when the amplitude is not too large. This propor-
tionality breaks down and the frequency shift can become
positive (for large Te/Ti), when (3&7n0)1/2> 0.25, where
ﬁi is the ion density perturbation and n, the average plasma
density. Nonlinear modulation of the wave-packet is clearly
seen; however, modulational instability was not observed.

The importance of the effects of trapped ions to these

phenomena is emphasized.



§1. Introduction

It is well known that, in the fluid description, the
nonlinear behavior of an ion-acoustic wave with rather short
wave-length is described by the nonlinear Schr¥dinger equation,

2
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T gz

+ qlel?¢=0 , (1)

where ¢(£,7) is the small but finite density amplitude, and

T and £ are stretched variables in the reducti;e perturbation
theoryl). From eq.(l), it is apparent that the ion-acoustic
wave in the fluid description is stable against modulational
instabilities because the product pg is negative. Furthermore,
the nonlinear frequency shift is proportional to -g|¢|?; wave-
wave interactions decrease the frequency.

In a kinetic description, wave-particle resonant
interactions become important. Ichikawa and Taniutiz) have
constructed a theory of nonlinear wave modulation beginning
from the Vlasov equation. They assumed the contribution of
particles near the phase velocity to be negligibly small in
comparison with that of particles near the group velocity and
hence neglected the effects of linear Landau damping and the
trapped particles. Then they showed that the structure of the
nonlinear Schrddinger equation (1) is modified in that a
nonlocal nonlinear term is added to eq. (1) and the sign of the
local nonlinear coupling coefficient q is reversed. They
conluded that the ion-acoustic wave does become unstable with

respect to the modulational instability.



Although this theory_neglected the effects of trapped
particles, several recent experiments have shown their
importance. Sugai et §l§) reported that the nonlinear
frequency shift is negative and is proportional to the square
root of the initial amplitude. Their results imply that the
frequency shift is mainly due to trapped ions42 Ikezi and

5)

Schwarzenegger observed experimentally that the nonlinear
frequency shift is much larger than that obtained from the
fluid description, i.e., from eq.(l)( and that the ion-acoustic
wave is modulationally stable. They eméhasiievthe importance
of the phase velocity shift due to trapped ions. Both
experiments were performed in the parameter region 103T./T; 530
and k/kDewl, where Te' Ti' kDe and k are the electron and

ion temperatures, the electron Debye wave-number, and the
wave-number of the ion-acoustic wave, respectively. These
experimental results suggest that the effects of trapped
particles should be included when 6ne considers the evolution
of the ion-acoustic wave with k/kDe%l and lOéTe/Ti§30.

The purpose of our computer simulations is to investigate
the evolution of the nonlinear ioh-acouétic wave with a rather
short wave-length, A%ZﬁADe where ADe is the electron Debye
length. We pay special attention to the nonlinear frequency
shift due to trapped ions and to the evolution of the wave-
packet, whose envelope varies slowly in space.

In 82, the model for the computer simulations is
described. In §3, the nonlinear frequency shift of the ion-

acoustic wave is studied. It is found to be proportional

to the square root of the initial wave amplitude ¢ when € is



small. This implies that the frequency shift is mainly caused
by the trapped particles. But when € becomes large, this
proportionality breaks down. 584 describes the space-time
evolution of the wave-packet. It is shown that in the rising
part of the envelope, thé wave-number decreases, while in the
falling part it increases. The modulational- instability was not

observed at all. Our conclusions are summarized in $§5.

§2. Model for the Computer Simulations

We consider a oné-dimensional, electro-static problem.
The electrons are assumed to be in a Boltzmann distribution
with constant temperature. For the ions, a hybrid solution
algorithm is used, which was originated by Denavit§) In this
model, the two-dimensional (x,v) phase space is covered with
a rectangular grid. Initially, all simulation particles are
located on the grid points, with mass and charge at location
(x., vj) proportional to the initial value of the distribution

J
function f(x.,vj). The particles move along the characteristics

]
of the Vlasov equation, and at a later time the distribution
function, f(x,y), is calculated from the locations and masses
of the simulation particles. The CIC(Cloud in Cell) model7)
is used for the simulation particles. Then, apart from

numerical errors, our computations are equivalent to solving

the following set of equations:
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ne/n0 = exp(eW/Te) ' (3)
-329/3x" = 4me(n;- n_) | ’ (4)
E = -3y/3x . (5)

Here Ny, N . Ny and ¥ are the average plasma density. the

electron and ion densitiés . and the electric potential,
respectively. Equation (2) is the Vlasov equation for the
ion distribution function. Combining egs.(3), (4), and (5),

we obtain the equation for the electric field

T )
e 9 . 1L  9E
E=-g35x [1n (ni ~'Zme 3x . (6)

The ion density n; is given by . integrating the distributdioén .
function f over velocity space. Then, we can obtain the

electric field by using the implicit jiteration: schemeg)
Periodic boundary conditions are used. The total conserved

energy for our model is

[Nk

E =

® 1 2
dvfv? + — jde» + den ey+ const.
tot JdeJ_.v v ;8m SV !

o L L
where L is the total length of the test area. Equation (7)
has the same form as eq.(8) in Ref. 9.
In our model, the velocity distribution of the particles
is replaced by a set of discrete beams. Such a system is

known to be subject to the beaming instability, even if the

(7)



envelope of the beam density is Maxwellians)'l9) The dispersion

relation for the beaming instability in a system composed of
multi-electron peams which pass through a uniform neutralizing
background of positive immobile ions was obtained by Dawsonloz
In our model, which consists of multi-ion beams with Maxwellian
envelope and an electron fluid, the dispersion relation for

the beaming instability is obtained in a similar mannar. As in

Ref. 10, the growth rate here is also given, in the limit of

Ava0, by
Y (kAv/2m) | 1n(Av/v;) |

where Vo and Av are the ion thermal velocity and the velocity
interval of the beams. In order to prevent the beaming
instability from growing, we reconstruct the distribution
function every N time steps during the course of the simulation
runez The time intervals between reconstructions are taken to
be short compared to the inverse of the maximum growth rate of
the beaming instability. In our simulations we take N to be
usually 10.

The ion-acoustic wave is excited with an initial ion

distribution function given by
f(x,v) = (no/ffﬁ VT){1+[l—emcos(kmx)]ecos(kx)}
x exp{—[v-(l—emcos(kmx)}evpcos(kx)]z/Zsz}, (8)

where €, €. and km are the perturbed ion density normalized by
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n,, the amplitude of the modulation, and the wave-number of the
modulation, respectively. To the phase velocity, vp, of the
ion-acoustic wave, we gave the approximate value

sz = (Te/M){BTi/Te +1/(k2Age+ 1)}. At the time when the
mconochromatic wave is excited, €n is taken to be zero. It

was observed that the distribution function of eq.(8) excites a
backward wave as well as a forward one. The amplitude of the
backward wave is, howéver, small in comparison with that of the
forward wave, the ratio of their amplitudes being about 0.1.

In our simulations, the distribution function has a finite

value in the velocity region —5vT§v$8 v Outside of

T
this region, it is zero. The velocity interval Av is taken to
be 180513vT/Avf280. The spatial mesh size Ax is 64§L/Axf256,
with L being the total system length. The time step At is
chosen to be wpiAt=0.2.

When the wave amplitude € is small, the dispersion
relation of the ion-acoustic wave thus excited is in good
agreement with that of Langdon's theory72 This is shown in

Fig.(1).
§3. Ndnlinear Frequency Shift

" In this section, the nonlinear frequency shift of the ion-
acoustic wave is studied. In this paper, the nonlinaer

frequency shift is defined by

Sw_=w
r w

rNL rL ’



where W NL and w.q are the real part of the frequency of the

nonlinear wave and of the linear wave, respectively. If the

frequency shift is caused by wave-wave interactions, its shift

)

is known to be proportional to the square of the wave amplitudel.
On the other hand, if the shift is mainlv due to trapved
particles, the shift mav be proportional to the sguare root of

the initial wave amplitude. For the electron wave. this has

been pointed out theoretically4)

]
simulations*lz For the ion-acoustic wave, direct application

and is supported from computer

of the theory in Ref.4 leads to a similar result, i.e. 5wr“/3,
when the effects of the trapped particles are taken into
account. And, Sugai et al. have observed experimentally that
the frequency shift Gmr of the ion-acoustic wave is indeed
proportional to the square root of the initial amplitude.

In Fig.(2), the observed frequency shift of the plane wave
is plotted as a function of the square root of the initial wave
amplitude. Wave excitation is achieved by the distribution
function of eq.(8) with €m=0’ The frequency of the wave is
known from temporal variation of the phase of é given wave-
number k. Provided the wave with wave-number k has frequency
Wy s the density perturbation of the k-th mode takes the

following form,
n, (t) = h{cos(—mkt + 8)cos (kx) -sin(-w, t + §)sin(kx)}, (9)

where h and § are constants. In the computer simulations, we

can measure the coefficients of cos(kx) and sin(kx) by the-
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Fourier transformation of the ion density. Then, by virtue: of
eq.(9), we obtain, from the temporal variation of coefficients
of cos(kx) aﬂd sin(kx), the frequency of a given wave-number k.
We can see from Fig.(2) that, except for the case of Te/Ti=30
and /520.35, the frequency shift is negative. Its magnitude
increaseé as Te/Ti decreases. The shift is proportional to the
square root of the amplitude when/€%0.3, which therefore
indicates that the frequency shift is caused by trépped ions.
It is interesting to note that the amplitude dgpendence of the
frequency shift seems to change when v€>0.3; the rate of
increase inlﬁwrl then becomes smaller. For the case of
Te/Ti=30, the frequency shift stops increasing when /520.25.
Furthermore, for /€>0.35, the frequency shift becomes positive;
i.e., the frequency of the nonlinear ion-acoustic wave becomes
larger than that of the linear wave. Quite recently, Kimlz)
showed theoretically that, for the electron wave, the nonlinear
frequency shift can become positive at large amplitudes. If
we apply this theory to the ion-acoustic wave, we find that
the frequency shift becomes positive when vp/vT and & are
large, with a = (vp/vT){(Te/Ti)s/(l + kZAZDe)}l/z, and also
that Gmr strongly depends on a while its dependence on vp/vT is
rathgr weak. For T_/T.>>1 and kzlse~1, we see that VP/VT~/T;751
and a~(Te/Ti) . Hence, the dependence of Gwr on Te/Ti is
very strong, which is clearly shown in Fig. (2).

When'em has a nonzero value, the intial distribution
function of eq.(8) excites a modulated ion-acoustic wave. The

amplitude devendence of the frequencv shift of such a modulated



wave is shown in Fig.(3), for the case where €m = 1.0 and

km/k = 0.1, with other parameters the same as in Fig.({(2). When
sm= 1.0, the amplitude at the top of the envelope is 2f£. Hence
the horizontal axis in Fig.(3) is measured by the value of (2e)1/2.
Although now there are reflected ions as well as trapped ions,
no drastic change from the case of the plane wave is seen.
Namely, the magnitude of the frequency shift still increases as
Te/Ti decreases, and the shift is proportional to the square
root of the amplitude when JE'f 0.3. Hence, even in the case
of a wave-packet with spatially'(slowly) varyiné invelope, the
nonlinear frequency shift is mainly caused by the trapped
particles.

Before closing this section, we note the following. From
the temporal variation of the wave-amplitude, which is not
presented in this paper, we did observe that as the initial
amplitude increases, the initial damping rate of the ion-
acoustic wave increases. We also found that, when the initial
amplitude is not so small, the period of the amplitude

oscillation is longer than that given by the following equation

Tog = 27/(eEqy k/M) 1/2 .

where E, is the amplitude of the electric field. These intersting

phenomena will be discussed elsewhere in a later paper.

_lo‘_



§4. Evolution of the Wave-Packet

In this section, the time evolution of the ion-acoustic
wave packet is studied. The nonlinear Schrodinger equation
derived from the fluid equations contains wave-wave interations
but,of course, wave-particle resonant interations are not
included. The wave-particle resonant interations have been
taken into account in the modified nonlinear Schrodinger
equation obtained by Ichikawa and Taniutizz But in their
theory, the effects of the trapped particles are neglected,
because they considered the case where contribution from
particles near the group velocity are more important than those
from particles near the phase velocity. However, the real

experiments3)’5)

already cited and the results of the previous

section indicate that, in the reéion k/kDe:l and 10<T_/T, <30,

the nonlinear effects are mainly due to trapped ions. The

following computations on the evolution of the wave-packet

were done in the same parameter region, and hence the effect of

trapped ions on the evolu:ion are expected to be significant.
In Fig.(4), the time evolution of the wave-packe£

is depicted. The profiles are plotted in the frame moving with

velocity vp (relative to the laboratory frame). Excitation of

the wave is achieved by the initial ion distribution function

of eq.(8): The parameters are taken to be €=0.1,

€m=l.0, km/kDe=O.1, k/kDe=1.0, and Te/Ti=20° For smaller

amplitude waves (€~0.005), which are not shown in Fig. (4),



the wave-packet expands due to dispersion and damps by Landau
damping. But, for the larger amplitude wave which is shown in
Fig.(4), the wave-number of the carrier wave is modulated as
the wave propagates, and the envelope considerably changes its
shape. The initial ion density profile is plotted in

Fig.(4a). At timeubi§=10, the maximﬁm point of the envelope

is seen to have moved slightly backward.. Atwpit=15, wave-
number modulation of the carrier wave is observed. In the
rising part of the envelope, the wave-numbér decreases, whereas
in the falling part, it increases. The top of the envelope is
flattenmed. For the plane wave with €%20.16, the amplitude damps
rapidly (more rapidly than the Landau damping rate) till
”%gf=15~20, then it begins to oscillate. Observed time period
of the amplitude oscillation is abouti%ﬂ$os=50. In view of
these results of the plane wave, we may interpret that the

fiattening of the envelope at wa§=15 is caused by the

amplitude oscillation of the larger amplitude part. At @§§=30,

expansion of the wave-packet due to group velocity dispersion

is observed. The maximum point of the envelope has moved forward.
Atubit=50’ a long wave-lengh density perturbation appears. Its
lengh is on about the same scale as that of the wave-packet.
Figures(4f), (4g) and (4h) then show the density profiles at
Qn§=60,85 and 105. In these latter three figures, the local
wave-number of the carrier wave is not the same at all spatial
points. A smaller wave-number corresponds to the rising part

of the envelope in the initial stage, and a larger wave-number

corresponds to the falling part of the envelope in the initial
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stage. We see that the amplitude of the carrier wave is rather
uniform in space. The long wave-length perturbation is clearly
seen.

Figure(5) shows the temporal evolution of the Fourier
amplitudes of the wave corresponding to Fig.(4). Because
the excited wave is modulated, there are three modes in k-space
at wpit=0. One is the carrier wave, and the other two are
sidebands. For the smaller amplitude wave, i.e., with €=0.005,
the Fourier amplitudes damp in time, but the relative magnitude
of the Fourier amplitudes does not change drastically. On the
other hand, for the larger amplitude wave, with €=0,1, the
sidebands grow and the carrier damps as the wave propagates.
This corresponds to the wave-number modulation of Fig. (4).

Finally, we have carried out simulations with various sets

of values for €m’ k Te/Ti and €. The modulational instability

m’
was never observed.
We wish to point out that these fertures of ion wave
evolution observed in our simulations are very similar té those
observed in the experiments by Ikezi and Schwarzenegger§)
On the basis of a phenomenological equation [their eq. (4)] they
give an interesting physical interpretation of the wave evolution
and claim that the nonlinear frequency shift due to trapped ions
can give rise to a wave-number modulation such that the wave-
number decreases during the rising part of the envelope while
it increases during the falling part. Then, if their

phenominological equation is valid, in view of our result in

the previous section that the frequency shift is negative for
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Te/Ti:ZO and is due to the trapped ions, may conclude that also

the wave-number modulation is mainly caused by trapped ions.
§5, Conclusions

The nonlinear behavior of ion-acoustic waves with short
wave-length was investigated by computer simulations. We paid
special attention to the effects of trapped ions from among
other nonlinear effects. The temperature ratio Te/Ti was
taken to be in the range leTe/Tif30. The nonlinear frequency
shift of the ion-acoustig¢ wave is negative and is shown to be
proportional to the square root of the initial amplitude € when
€<0.1. This fact indicates that the frequency shift is mainly
caused by trapped ions. We also note that this amplitude
dependence of the frequency shift changes when sio.l; the
increase of the frequency shift then becomes slower. In
particular, for Te/Ti=30’ the frequency shift beccmes positive
when 820.1. Bearing in mind these results, we next examined
the behavior of a wave-packet including the effects of trapped
particles. Simulations for the evolution of the wave-packet
clearly show the nonlinear modulation of the ion-acoustic wave.
In the rising part of the envelope, the wave-number decreases,
whereas in the falling part, it increases. In correspondence
with the wave-number modulation, the sidebands grow and the
carrier damps. The modulational instability was never

observed.
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Figure Captions

Fig.l. Linear dispersion relation for ion-acoustic waves with
Te/Ti=20’ The solid lines are obtained from Langdon's
theory. Triangles and cirels denote the observed values
of “E/‘ﬁi and wi/‘%i’ where oW and w; are the real and
imaginary parts of the frequency. The mesh size in phase

space in given by L/(2n/k)=2, L/Ax=64, and l3vT/Av=183.

Fig.2. Nonlinear frequency shift of thé nonochromatic ion-acoustic
wave. The observed shift, —Gmr/er, is plotted as a
function of the amplitude ve€. The wave-number is chosen
to be k/kDe=l.0. The marks of cross are the values from the
real experiment of Sugai et al. with k/kDe=O.4 and
Te/Ti=lO. The mesh size is taken to be L/(2w/k)=2,

L/Ax=64, leT/Av=183. (We also tested with l3vT/Av=lO90,

but the results were almost the same. )

Fig.3. Nonlinear frequency shift of the modulated ion-acoustic
wave as a function of (2(»:)1/2 with k/kDe=l.0, km/k=0.l,

and €m=l.0. Here L/(2n/k)=10, L/Ax =256, and 13vT/Av=290.

Fig.4. Evolution of the wave-packet with Te/Ti=20, €=0.1, and
k/kDe=l'0' The ion density profiles are plotted in the
wave frame. (In the laboratory frame, the wave propagates

to the right.) L/(2n/k)=10, L/Ax=256, and 13VT/AV=290.
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Fig.5. Temporal behavior of the Fourier amplitudes of the ion
density perturbation. The horizontal axis is the wave-
number kL/27m, which assumes integer values since the
system is spatially periodic with period L. Parameters

are the same as those in Fig.4.
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