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Abstract

A general theory is presented for the diffusion of a
multi-ion species plasma across magnetic field due to electro-
static fluctuations. The theory is based on the weak turbulence
theory for an isothermal plasma in a slab geometry. It is shown
that the diffusion flux due to wave-particle interactions is not
necessarily proportional to the density gradient of the particle
speciés of interest. The result is applied to the ;mpurity
diffusion due to those drift waves which exist in a single ion-
-species plasma. The dominant nonlinear effect is the induces
scattering of waves on ions and the resulting diffusion constant
of the host lons 1s given by the Kadomtsev formula, D.y%/k2%uw,
where y, w and k are respectively the growth rate, frequency and
wavenumber of the drift wave. The impurity diffusion constant is

positive (or negative) if the impurity Larmour radius is smaller

(or greater) than the host-ion Larmour radius, and becomes greater

than the host diffusion constant if the spectrum is localized in

the unstable region.



§1. Introduction

Anomalous diffusion of plasma particles across the magnetic
field due to drift-wave fluctuatlons has been a subject of
extensive investigations}_B) In this paper, we discuss the
problem of mutual diffusion of different ion components. Coppil
et a1.9-13) have argued the effect of impurity mode
on the impurity diffusion. Here we first derive a general
expression for the diffusion flux in a multi-ion species plasma
due to the general electrostatic fluctuations, and then consider
specifically the problem of impurity diffusion due to'the
ordinary drift waves, i.e. those drift waves which exist 1in a
single ion component plasma.

Drift waves are accompanied by an electrostatic field,
E;—V?, and a density fluctuation, Sn. The electric field
produces an ExB drift motion of particles and this drift motion
yields a diffusion flux across the magnetic field when there exist
a phase difference between ¥ and dn. One can alternatively
interpret this diffusion flux as arising from the drift motion
of particles due to the force exerted by the wave via wave-particle
interaction. One important feature of this diffusion flux is that
it is not always proportional to the density gradient of the
particle species under consideration. Indeed, the direction of
the diffusion flux depends not only on the density gradient, but

also on the wave momentum.

For quantitative estimates, one needs to know the saturation
level of the drift waves. Restricting ourselved to the ordinary

drift waves, we determine this saturation level by the weak



turbulence theory. Quasilinear effects can be included
phenomenologically as determining the average backgroud properties
of the plasma, but are assuméd to be insufficient for the ultimate
stabilization of the drift waves. Since the linear dispersion
curve for the drift wave in the wavenumber region KL91~1 is of
non-decay type, the dominant nonlinear effect is the induced
scattering of waves on the ions*. Taking this effect into account,
we find the saturation level of the order of (e?VTe)2~(K/kL)z(y/w),
where Te is the electron temperature, x the reciprocal of the
density scale length. of the electrons, k; the typical wavenumber
of the drift wave perpendicular to the magnetic field, y the growth
rate and w the real frequency. The resulting electron diffusion
constant agrees with the Kadomtsev formulalu), De~72/wklz. The
impurity diffusion constant can substantially exceed this value,
and its sign depends on the Larmour radius; it is positive (or
negative) if the Lamour radius of the impurity ion is smaller (or
greater) than that of the host ion.

In §2, we derive a general expression for the diffusion flux
in terms of the polarizabilities, including the nonlinear mode-
-coupling effect whithin the framework of the weak turbulence
theory. Then in §3, we discuss the contribution of the linear

polarizabilities in some detail, showing explicit results for the

* There may be a decay into the impurity mode which we shall
neglect here by assuming that it is by some means unimportant,

€.q. by a large collision frequency of the impurity ion.



case of Maxwellian distributions. Up to this Section, the
results obtained are quite general, being valid for arbitrary
electrostatic waves and arbitrary composition of the plasma.
Sections U4 and 5 are devoted to the problem of impurity diffusion
due to the ordinary drift waves. In §4, we estimate the
saturation level and the diffusion flux of the host ions by
considering a single-ion species plasma and by taking into account
the induced scattering on ions. Then in §5, we discuss the
resulting impurity diffusion flux in some detail. Finally in §6,
a brief discussion is given on the overall feature of the
diffusion flux as well as on the quasilinear effects which we
shall practically ignore. Possible application of the present
formalism to the mutual diffusion of a D-T mixture 1is also added.
Unless otherwise stated, we shall for simplicity consider an
isothermal plasma and use a slab geometry of a constant magnetic

field along the z-axis with a density gradient in the x-direction.

§ 2. Diffusion Flux Due to Electrostatic Fluctuations

The diffusion flux along the density gradient (i.e. in the
x—-direction) due to electrostatic fluctuations can be written as

~r ->
M. = ___’Lgc < Rplr,t) E(F.,v) > ()

where B is the magnitude of the magnetic field, ¢ is the speed of
light, nd(x) is the average density, ﬁc(?,t) is the normalized
density perturbation, ﬁo=6no/no, Ey(?,t) is the y-component of

the fluctuating electric field and the angular bracket denotes



the ensemble average; the suffix o denotes the speciles of the
particle with o=e for the electron, o=i for the host ion and
0=z for the impurity ion. Equation (1) describes the average
flux due to the ExB drift in the x-direction. Derivation of
eq.(1l), as well as a discussion concerning its validity, are
given in the Appendix.

We introduce the linear and nonlinear-polarizabilities,
X?(E, w), X:(;', w'; E“, w"), ---, which relate the Fourier
component of ﬁo(?, t) to that of the normalized potential
(T, t) = eQ(P, t)/T, as

Tok) = X ey dR) + 2, X7 (RS KD Dur') Pik?)
! R+ k"=
+ 2 X, R, kY k™) k) PR P(R™) 4+
R4R"+"'= o
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where we introduced the simplified notation, kz(?,w) and

2. = L Z dm'de“ S 2, > S (W'tw'-w)
k=R R R® Ker",k ‘
etc., and used the local approximation by assuming IK&|>>|KI-
We also assume that the nonlinear polarizabilities are symmetrized
with respect to the permutation of the arguments, i.e. Ko(k', k")
2

= &S(k", k'), etc. Substituting eq.(2) into eq.(1) and neglecting

the terms higher than the fourth order, we obtain,
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We calculate the nonlinear terms (the last two terms on the
right-hand side) by the standard method of the weak turbulence
theory}u’ 15) Namely, we consider a uniform and stationary

turbulence and introduce the spectral function IE by the relation

< PRIDIRD > = @r)* S g § (Ltw!) S (w-wi) Ip )
], Rk

where W is the frequency of the drift wave of wavenumber K.
Then, using the Poisson equation, we calculate ¢(k) by fiteration
to express <¢¢¢> by <¢pp¢> which is decomposed into a sum of
products of <¢¢> using the random phase approximation. The

final result can be written in the form,
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Here, the coefficients a=%>, and B.°

2 R ey are respectively given
by
o -
Ay = Im { 3XTCR, 0 R, -0 s R, op)
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€ (R-R', wg=-wi)

7)
where
E (k) = RYRS ~ L (Cong.eme) A,T(R) 3)
o
é‘z(k, kR') = - 02} (EeNg 7€M ) Kf.(.k, r') Q)

with e, being the charge of the g-th species of particle (ee=—e)
and ke the electron Debye wavenumber.

The coefficients aﬁcf' and BK By are related to those
which appear in the wave kinetic equation that can be derived in
the same approximation as abo?e:

3
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The relations are
) [ 2
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Using these relations, one then obtains the following general

formula:
- -~ 3 Iz
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o 2 k
This formula implies that in the stationary state, where aIg/at=O,

the diffusion is strictly ambipolar. This is consistent with

the result derived in the Appendix.

§3. Linear Contribution

In this Section, we consider the contribution of the first
term inside the square bracket on the right-hand side of eq.(3).
Using eq.(4), we can write this term as

) -
V; = -mn <Te

TS k), I (R, W) 1R U3

M

The factor Im Xg(?, m?) is proportional to the phase difference

between the potential and the density perturbation and can in

general be written in the formls)

:
)1/3 :.u)/kz ,

T X[ (R, W) o {[Re 57, + 5 sxiret® V)

(4)



where Q, = eUB/moc and fo(x, v) 1is the average distribution
function. From this relation, one can immediately infer that
there are two contributions to the diffusion flux Tc(l); one

is proportional to the density gradient dno/dx (contribution of
afo/ax) and the other is independent of dno/dx (contribution of
3fc/3vz). This result 1s generally true and can he given the
following physical interpretation.

We first note that Po(l) as given by eq.(13) is simply the
sﬁm_of the drift motions due to the momentum flux. exerted by
the waves. 1Indeed, the time rate of change of the wave momentum
density ?ﬁ of wavenumber ? due to wave-particle interactions can

be written as

3 )
‘LP‘? = If_.n L Mg, Imn "(r(?» wp) IT(’ 3
at e o

so that the force acted by this wave on one particle of speciles

o along the y-direction is given by

Foy = - Te ity 5 Im X7 (¥, wR) Ig
which causes a drift of velocity Foyc/eoB in the x-direction.
Collecting this drift motion for all the wave modes, we get the
diffusion flux given by eq.(13).

Now, the linear wave-particle interaction consists of
absorption and emission of waves by the particle, and the net
absorption or emission results in the damping or growth of the

wave. Associlated with this, there occurs a net momentum gain or

- 10 -



loss of the particle. The direction of this net momentum transfer
is independent of the density gradient of the particles of given
species, so is their resulting drift motion. This accounts for
the term which is independent of dno/dx. The term proportional
to dnc/dx arises from the usual effect; namely, even when there
is no net absorption or emission of the wave, there exists a
drift motion associated with the individual absorption or emission
processes, and in the presence of the density gradient the flux
due to this drift motion does not average to zero.

In order to obtain a more explicit result, we consider thé
case when the average distribution functions are given by local

Maxwellian forms:

(]

. -~ -3
fo(x,w) s Me (Xt e) T G e CVYVE) (8

where vo(=[2T0/m0]VQ) is the thermal speed. Stating from the
Vliasov equation with the collision term expressed by the Krook

model of collision frequency Vo we then obtain the following

expressions for the linear polarizabilitieslu’l6):
¢ e w—-w¥ = 7 .
XT(ky = - o [1- 22%  Fotk,w) | Uy
: ¢ Tg irz| Vo

*
where Wy (=-kchTOC/eoB) is the drift frequency associated
with the density gradient, K0=—dlnnc/dx, of the o-th speciles of

the particle and the function FO(?,w) is given by

—_ - "(Se) Y L (Wtae) 7wz To- o
FelR W) = o - . JEUA S

i = AUV /Ry Vg ) [\ Ser ¥ [twr Ve /iry | 0 )
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Here s_= kfp02= ijT;/m,inﬁ(S)= Io(s)exp(-s) with I, being the

- zero-th order modified Bessel function, and Y(z) is the plasma

dispersion function defined by

o
l exp (-x?)
Y(z) = N3 S dx “P (d »0) (1t

) oo Z-X +1§ .
If one used the asymptotic formulas for Y(z), one can derive more
- explicit expressions for Ime(k). As an example, we give the

expression for the case when w>> Ikzlv Vo and s >>(k v _/w)?:

g’ ‘o

o — _ &5Te - '* /e - Jﬂi_
vqu xl (k) - " 'é?; A(Sf) (W-~wge ) { lkll V:,— "P( kfwr,f'
+ (W /w?) f_l~/\£9a-)_.\} aq)

As seen from eq.(16), Im{?(f,wﬁ) is proportional to (wﬁ—w:)
of which the ternlwﬁrrepresents the contribution of afc/avz and
the term wc* that of afg/ax. For the case of the ordinary drift
wave 1n a plasma with small impurity concentration, Wy is
approximately‘given by we*, so that the ion diffusion flux is
proportional to

r;:” < -%é ;%% mmg + ‘égi ié;.L“7tc'
Thus if the impurity ion has a density gradient opposite to the
host ion and hence to the electron, the two contributions to the
impurity flux tend to cancel each other. In other words, this
type of drift wave tends to prevent the penetration of the

impurity ions from the low plasma-density region. Unfortunately,
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the magnitude of Imxf(ﬁ, wﬁ) for the ordinary drift wave 1s
extremely small in a thermonuclear plasma; i.e. the Landau
damping term in eq.(19) is negligibly small because of the large
impurity mass and the collisional contribution for ne=10”/cm3
and Te=lOKeV becomes of the order Imxf ~ vZ/wE ~ (ez/e)XlO_s.
Therefore, as far as the linear contribution is concerned, the
impurity flux, P?, is mostly determined by the low-frequency
impurity modef In the following Sections, howeuer, we shall
show the possibility of a large impurity flux due to the ordinary
drift waves when the nonlinear polarizabilities.are taken into

consideration.

§h. Saturation Level and Diffusion Constant for 2. Single Ion

Species Plasma.

We now examine the relevant nonlinear effect which limits
the linear growth of the drift waves and estimate their saturation
level. We shall do this by restricting ourselves to the effect of
the ordinary drift waves in a plasma which contains only a small
fraction of impurity ions, 1i.e. nie>>nzez. We entirely neglect
the effect of impurity modes, which may be justified, say for a
relatively low temperature plasma where the impurity collision

frequency becomes sufficiently large to suppress the low-frequency

* In a low temperature plasma, the situaticn is different

because of the relatively large collision frequency v, .
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impurity modes. 1In order to investigate the saturation level of
the drift wave and the diffusion constant of the host ion in such
a plasma, we can to the lowest order disregard the presence of
the impurity ion and consider a plasma of single ion species.

For a single ion-component plasma, the dispersion relation,
el(ﬁ, wp + iYR)=O’ for the local Maxwellian distributions (15)

yields the following result:

wXA @-A) ket o )
Wo = ¢ |+ ¥z Qe
R 2~AN [ ,\l wc ] 3

* .
I = Goar Ie [XCR ey - XEE,wp) ] L@
where for simplicity we assumed that T,=T, and |Yﬁ|<<|wﬁ|. For
Im X?, we use egs.(16) through (18). In eq.(20), the second term
inside the square bracket is much smaller than unity, and the
function wé*A/(2-A) is plotted in Fig.l. One can see that in

the region where k191 is of order unity, where the growth rate

P becomes maximum, the dispersion curve is of non-decay type.
Moreover,.for Te=Ti’ ion acoustic waves are highly damped, so
that decay into ion acoustic waves does not occur. Therefore,

the dominant nonlinear effect will be the induced scattering of

drift waves on the ions.

The resonance condition for this process 1is

1 TR
WR-WR = (R - ki) Uy

- 14 -



Since the right-hand side for thermal ions is much smaller than
the left-hand side for the typical pair of unstable waves, one can
appfoximate this resonance condition by W= Wpdy - This means that
the energy redistribution of waves takes place over the equi-
-frequency surface. The drift waves tend to give the y-component
of the wave momentum to the lons, so that the wave energy 1s
carried toward the direction of small ky. In Fig.2, we show the
equi-frequency surface. One can see from this figure that as ky
decreases below the value kypi=0.6, kx decreases and kz increases,
Now, a slight increase of kZ causes a strong énhancément of the
ion Landau damping. Thus this nonlinear process transfers the
energy from the linearly growing region to the damped region, as
shown in Fig.3, and can thereby bring the system to an ultimate
saturation. |

For the induced scattering on ions, the coefficients Bﬁpﬁ,
and agea, vanish, while the coefficient agig, is calculated in
ref.(15). The calculation was carried out by neglecting the
collision term, but by assuming the local Maxwellian distribution
‘for the resonant ions which are in the high energy tail region
since the typical value of Iwﬁ—wg,l is much greater than
lkz—k'zlvi for klpi~1. It is not quite clear whether this
nonlinear process brings the system to a complete stationary
state. The final state is likely to be a quasi-steady state
where the fluctuation spectrum oscillates around a mean value
<Ia>. We estimate this mean value by the time average of eq.(10)

K
which yields

B

T € D <, R
L ,-X. \k'u.):)_xk(k,wa

e
r-
.2

¢ 7 \AZ)
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We shall be content with an order of magnitude estimate of the
saturation level. From eq.(21), the left-hand side is estimated
to be of the order of YE/wE, while the coefficient aﬁiﬁ,, whose
explicit expression 1s given in the next Section, eq.(25), is

estimated to be (kL/Ke)2%5) Thus we find

I <Tp (ke X (23)

where y and w stand for the typical growth rate aqd frequency of
the'drift wave,

One can give a simple physical interpretation for this result
as follows. First we note that the electric field E associated
with the background drift-wave turbulence causes an EXB drift
motion of the plasma fluid. Because of this drift motion, the
frequency of a test drift wave suffers a random modulation due to
the Doppler effect. The modulation amplitude is of the order of
klvE, where‘vE=cE/B, and is much smaller than the frequency
itself if the turbulence level is sufficiently low. Such a random
frequency modulation causes a damping of the test wave with the
damping rate given by <(kLvE)2>Tl7), where T is the auto-correlation
time of the modulation and is approximately given by w~!. The
saturation level is then determined by balancing this damping with

the linear growth, i.e. <(klvE)2>/w~Y. Noting that w~k v_, where

D
vD,is the diamagnetic drift velocity, and the relation E~k,§
=k Te¢/e, we then find <¢2>~(K/kl)2Y/w which gives the relation

(23). Condition for weak modulation is satisfied since y/w<<1,

- 16 -



Let us finally evaluate the diffusion flux. Under the
condition (22), the diffusion is ambipolar, so that it is
sufficient if we calculate Fe. Assuming that the fluctuation
spectrum is localized in the linéarly unstable region, we neglect

Im X?(f, w?) and set Im Xf(ﬁ, mE)~Y /w . Then from eq.(5) and (23),

we find
CoL & am & N
e T e ‘X Ax RE W ) 4 )

which is in agreement with the Kadomtsev formulalu).

§5. Impurity Diffusion Due to Induced Scattering on lons.

We now investigate the impurity diffusion flux associated
with the induced scattering of the ordinary drift waves on ions.
To this end, we extend the calculation given in ref.(15) to a
plasma which contains a small fraction of impurity ions. The
calculation is straight forward and the result can be written as

follows:
3 <> o I}
o cTef ((Rxk').p ] o, , ..
v — m— P, o = -
Uggr = T “r(eg)“‘?‘“— (ky-1') s (wi~wir) § ’ @$5)

where oxe, B(=§7B) is the unit vector along the magnetic field and
o0

DT = [ ar e (% JE) T 0 v

©
= -
A AT S AT IR LA I
, -~ - -, 2
X 3 at e-t:l: (e JE ) ﬂ\d‘:_ﬁl.}oil%—&,{l /F)/A([o’(:-a‘.] /2)
o s
(26)
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with a =k, v _/Q_, ao'—kg_vo/ﬂo, o =|a| etc. and J, is the

g g

Zero—th order ordinary Bessel function. Substitution of eq.(25)
into eq.(5) with “EeE'=61§ p+=0 yields the associated diffusion
flux. In the derivation of egs.(25) and (26), we assumed that
wE~wE,>>[wﬁ—wE,| and nye,>>n e _, and that both the host and the
impurity ions have Maxwellian distributions.

We first note that aﬁqﬁ,, and hence the resulting diffusiqn

flux, is proportional to the density gradient « in contrast to

g?
the'contribution of the linear polarizabilities. This can be
explained as follows. In the induced scattering process under
consideration, there is no absorption or emission of the wave
evergy since Wp=wia, but there exists momentum exchange between
the wave and the particle associated with the angular scattering
of the wave. In each scattering event, however, the probability
for increasing ky and that for decreasing ky are the same, so that
for a uniform distribution of the particles there is no net
-momentum exchange between the wave and the particle. A finite
diffusion flux arises only when the particles are nonuniformly
distributed and as a result the drift motion due to the individual
scattering event yields a net drift flux. Note that it is this
same effect that causes a net decrease of ky by the induced
scattering on ions.

We next note that the relative magnitude of the diffusion
flux of the host ion to that of the impurity ion due to a given

scattering process, say from wavenumber R to wavenumber’?', is

given by Kiﬂi/Kzﬂz (see eqs.(5) and (25)). The function 9° is,
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on the other hand, entirely determined by the Larmour radius,
pq=|voﬁﬁgl, as seen from eq.(26). Therefore, for given density
gradients, the difference between the contributions to the
diffusion fluxes of the host and the impurity ions arises only
from the differencé between their Larmour radii.

To obtain an explicit information, we numerically calculated
ﬁo for several different cases. Fig.l shows the results for the
case klpi=kl'pi=.8//2 and pz/pi=.u, 1 and 2; 6 is the angle
between K and k' and is restricted to the region 0<8<m/2, since
the drift-wave spectrum is presumably confined to tﬁe quadrant,
ky>|kxl>0. From this Figure, one can observe the following two
features: first, except for the case when P,=Py s the impurity
diffusion is substantially greater than the host diffusion, and
secondly,.DZ becomes negative when pZ>pi. These two features can
also be seen from the limiting expression of ﬂc at klpi, kLpz<<l.
In this case, we find by retaining the lowest order terms,

B = (A- P Rk oo
. (217)
B = 9t iR e >

which show that Ié'is of higher order than D% with respect to

k,'p0 and that o7 changes sign depending on whether piz>pZZCDZ>O)
2. 2 Z
or p,“<p * (P"<0).
We now give a physical explanation of these results. As
shown by TsytovichlB), the physical mechanism of the induced
scattering is the emission of the scattered wave due to the

oscillating particle current produced by the incident wave which

is abscrbed. The resonant particle is accompanied by a screening
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charge, and the oscillating current consists of both the resonant
particle and its screening charge. When the screening charge
consists of the same species of particles as the resonant
particle, the two contributions to the oscillating current

almost cancel each other, so that the cross section for the
induced scattering becomes very small. On the other hand, when
the screening charge consists of the particle species different
from the resonant particle, the oscillation amplitudes of the
screening charge and the resonant particle are'different, so that
there is no cancellation of the associated current. In the present
case, the screening charge mainly censists of the host ions; the
electrons do notAcontribute to the screening, since they are
magnetized in the scale length of the ion Larmour radius and are
unable to follow the rapid gyrating motion of the resonant ion
(k,v.<|a4], |QZ|). Therefore, the induced scattering on the host
ion 1s strongly reduced as compared with that on the impurity ion.
This explains the first of the above two features. To account
for the second feature, we note that the diffusion flux of the
impurity ion consists of two parts, one as a resonant particle
and the other as a screening charge to the host ion. Obviously,
for P,=Py the host ion and the impurity ion cannot be
distinguished from each other, so that the two contributions

just cancel each other. When pz>pi, the impurity ion can more
efficiently screen the resonant particle than the host ion, so
that the contribution as a screening charge becomed dominant.
Since the.screening charge is a "hole" of negative charge, its
flux along the density gradient corresponds to a particle flux in

the opposite direction, whence we get a negative diffusion constant.
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§6. Discussions
We have investigated in Sections 3 and 5 the diffusion fluxes
due to the linear and nonlinear scattering processes separately.
The actual diffusion flux consists of the sum of both
contributions. The relative importance of the linear and
nonlinear terms depend sensitively on the fluctuation spectrum.
Let us consider the impurity diffusion due to the ordinary

drift waves. Its velocity is proportional to (see egs.(5) and
(25)),

ke, DF N
2 [I,m ’(,z‘?,u-’;z)"‘ % . b,S,; XRR: <IT¢">]<,IT¢‘> (%)
"4 ! ~ ' .

We have pointed out in §3 that the linear contribution of the
ordinary drift wave to the impurity diffusion is relatively

small. To evaluate'the nonlinear contribution, we replace
KiDZ/Kipi by its typical value and take it outside the summation.
Then the saturation condition (22) yields the following expression

for the nonlinear term:

3 .
% :23 Lo [’(.e‘g’“’i’) - XMR L wp) J Iy | 29)

We compare this quantity with the corresponding expression for

the host ion which is given by
zé T XS(R,wp) IR | . (30,

Now, the term Im &e(ﬂ;wﬁ) is large in the linearly unstable
1
region whereas Imxi(?, mﬁ) is large in the linearly damped region.

Therefore, if the spectrum <I?> is more localized to the linearly
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unstable region than to the damped region, the impurity diffusion
willl be greater than the host diffusion, since in most cases
IKzﬂz|>IKibi|, as we have shown in §5. The direction of the
impurity diffusion depends on pz/pi as well as on K, On the
other hand, if the spectrum spreads olmost equally to both the
linearly unstable and damped region, then there is a large
cancellation in eq.(29), so that the impurity diffusion becomes
even slower than the host diffusion.

The basic feature of the result obtained imn the present
paper will also be applicable to the mutual diffusion of a D-T
mixture, although the explicit expressions for the nonlinear
coupling coefficients, i.e. egs.(25) and (26), are to be modified.
In this case, since the tritium has a greater Larmour radius than
the deuterium, the nonlinear scattering process tends to carry the
deuterium outward and the tritium inward.

Let us finally discuss the quasilinear effects which we
assumed to be insufficient for the ultimate saturation of the
drift-wave instability. There are three quasilinear effects:
the modification of the electron velocity distribution, that
of the ion velocity distribution and that of the plasma‘density
profile. First, the qQuasilinear modification of the electron
velocity distribution can readily be suppressed by weak electron-
-electron collisionslg) since the resonance width is extremely
small for the present low-level saturation of the instability.
Secondly, the modification of the ion velocity distribution
becomes important when a high-energy tail, of order v, ~w/k, , is

produced. The time needed for formation of such a tail may be
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estimated as 1~(w/k,)?/D, where D(~[eik”§Vmi]2/w) is the
velocity-space diffusion constant. Using the saturation level
(23), we find 'r.u(Kek,,,/kf,)zy’1 which 1s much greater than the growth
time y !. Therefore, this quasilinear effect is also unimportant
for the present case. Finally, the quasilinear modification of
the density profile becomes important when the drift waves are
strongly localized due to a magnetic shear. 1In a Tokamak plasma,
each drift wave is localized near one of the rationaL surfaces
which are distributed in space with the spacing Ax of the order
of Aq(dq/dx)—’~k11piLsK;(e/q), where L, is the magnetic shear
length, € the aspeéﬁ ratio, q the safety factor. The drift

wave can be stabilized by a iocal flattening of the density
profile only when Ax is greater than the wave localization length.
The latter is of the order of peKeLszo), so that the quasilinear
effect is unimportant unless Ke/kl>(q/€)(pe/pi)' If this
inequality is satisfied, on the other hand, the drift wave is

gtabilized at an extremely low level and no anomalous diffusion

can be expected.
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Appendix

We start from the microscopic momentum transpart equation,

b9 I 9
“"[ FY CL";% Ve- ] T 9F P + g 77"fi”

it
= S - Ne(F,t) E(F.¢ -
s [ Ne —Z + < Mg ) > j] (A-1)
where
' k3 -» -
Ngmm ny 4 - -r. A—-2
P,o= 2y < B Vo.l sLr-ryel )  (A-2)
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R
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N PR T A T TN
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N
na (P ey = L 0§ (P-Trwr] A-4)
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- 2 _Poe)) J ‘
EwW,e)= - Ze,2 Slr-rpnl 5 LRAC)
! y€s' o
“w-~9)

the summation symbol, Zjeo’ denoting the sum over the particles
of species o, and the rest of the notation is the same as in the

text. We consider a stationary state and take the y-component of

eq.(A-1), obtaining

. N ) o >
4% / i V - " . . 4
TR ey T WG FE Ny, T e N Vo
= -_‘S_‘ N —» = 2 A=6 ]
g ~ V‘ﬂ.gy‘,t ) Cy (8 ,'\’.‘ / 7 w )



In the absence of the first two terms on the left-hand side,
eq.(A-6) yields the flux density given by eq.(1). It 1s therefore
sufficient to show that the first two terms on the left-hand side
of eq.(A-6) are small as compared with the third term.

The first term of eq.(A-6) can be estimated by approximating

v by the diamagnetic drift velocity, v__=k T /m_Q . The ratio

oy oy o0 00
of the first term to the third term in eq.(A-6) then becomes of

order K;pé which is assumed to be much less than unity.

Consider next the second term of eq.(A-6). In the quiescent

case, this term can be written aszl)
G e =L i 9 el (Mo 3oy 13 %
';n_; (a?‘Tra-/y—q ™y A< Sie Nge A 2 Jdx
P 2 . .
~ M,y T e (i tVex ) A=)

where vcl(=p;voKo) is the classical diffusion velocity. In a
turbulent plasma, Vg is enhanced to v . Equation (A-7) then
shows that this term is again of order K;p; as compared with the
third térm of eq.(A-6). We therefore conclude that the first
two terms on the left-hand side of eq.(A-6) are smaller by a
factor K;p; than the terms retained in eq.(1). We note that

in this approximation the local current density across the

magnetic field vanishes.
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Figure Captions

Fig.1. The dispersion curve of the drift wave in a single ion
component plasma with kz=0.

Fig.2. The equifrequency surface of the ordinary drift wave in
the wavenumber space.

Fig.3. The equifrequency line of the ordinary drift wave in
the ky-kz plane and the stable and the unstable regions.

Fig.l. The coefficients 31 and ©Z as functions of the

scattering angle 6 for p_/p,=.4, 1 and 2 with k, p,=k'p,=.8//2.
z’ Fi it S s |
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