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Abstract

Nonlinear propagation of externally driven waves in the
lower hybrid frequency range in an inhomogeneous plasma are
investigated. The results of finite temperature, inhomogeneity
of the plasma and density depression due to the ponderomotive
force are emphasized since these effects are responsible for
the propagation characteristics of the waves. The results
shows taht the waves are localized in a spatial wave packet
that propagates into the plasma center along the conical
trajectory which makes a small angle with respect to the

confining magnetic field.



§1. Introduction

Problems associated with propagation of lower hybrid
wave from the outer edge of the plasma to the lower hybrid
resonance layer are contemporary of interest in connection with
the studies of effective heating methods in magnetically
confined plasmas.

Cold plasma analysis of the propagation of waves near
the lower hybrid frequency in an inhomogeneous plasma indicates
that this frequency range may allow for very effective
transport of rf power from an antenna, located just outside

1)

of a plasma column, to the lower hybrid layer .
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Recently, the experimental measurements and numerical analysis

showed that the waves are localized in a spatial wave packet
propagating into the plasma along a conical trajectory which

makes a small angle with respect to the confining magnetic

field.s)

Linear mode conversion in the presence of plasma
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inhomogeneity has an effect on the propagation and the

density depression due to the ponderomotive force has a

profound effect on the wave propagationl4%le). The futher

evolution of the waves near the resonance layer is also

influenced by finite temperature effects.ll’l3'l7m19)

15) we investigated the wave

In the previous paper
propagation in a homogeneous plasma under the influence of
two effects, namely the density depression due to ponderomotive

force and the finite temperature effects. The result insures

that the wave energy is carried into plasma center through



the propagation cones, which takes a form of the stable
soliton structures.

Some general characteristics of the conversion and
absorption of the high frequency pump wave within the nonuniform
Plasma may be determined by the compitition of some effects,
such as the plasma inhomogeneity, density depression and
finite temperature effects etc. Such.an analysis is the
subject of this paper.

The plan of this paper is as follows:

In Section 2, a nonlinear wave equation will be derived
within the theory of fluid equations including the finite
temperatures. In Section 3 we derive the approximate equation
describing the lower hybrid wave propagation in the WKB sense.
Some numelical results are illustrated on the basis of the
above equation in Sec.4. The last section will be devoted to

the concluding discussions..

§2. Basic Equations

The basic systems of equations relevants to the present

problems is written as followsls):
v T
—& v v =-88 _ €3 - _e 1
52+ (U, 3)ve = - = — x B m o v n,, (1)
on
e . Ty -
3t v (ngVe) o (2)
v, T
i, 3,93 =, 2 _ i1
St Ty 3)Vi = Mi:5 e Vi X B M ng $ni ’ (3)
on,
i . > _



V. _ gre ¥ (nv -n.,v.) (5)

In these equations, vj is the j-th species fluid velocity,
nj is the density, E is the wave electric fluid, B is the
magnetic field and Te(Ti) denotes the electron (ion) temperatures
respectively.

The geometry of the problem is taken as two dimensional
with the z-axis along the direction of the magnetic field B0
and x-axis perpendicular to it. Also the plasma density varies
in the x-direction. Thus the inhomogeneity is introduced
through the density no(x). We assume the spatial dependence
of the steady state potential oscillations ¢ = $(x,2z)exp(iwt)

+ c.c. with Qi << @ << Qe. Here Qe(Qi) means the electrons
(ions) cyclotron frequency.
From equations (1)~ (5) with the above assumptions, one

can obtain the following nonlinear equations for ¢ as
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where E=-V¢, ¢ is the usual mobility tensor and én (§n =6n,
i

=§n) is the low frequency derivation of the plasma density

from its average value no(x), which occurs through the action

of the ponderomotive force of the high frequency oscillation.

Here 6n is given as
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which is obtained by averaging over the characteristic time
1/w (v is the high pump frequency). Here ¢s is the self-
consisten’ ambipolar potential which may be eliminated by the
quasi-neutrality condition.

The z-component of the ponderomotive force gives rise to
density cavities along the magnetic field. This cavities
modify the linear characteristics of the lower-hybrid
oscillations. Thus we consider only the z-component of the
ponderomotive force. This procedure gives the density
derivation in the form
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The equation (6) with eq.(7) is quite general and may be
useful for future investigations of another electrostatic modes.
Substitution of eq.(8) into eq.(6) yields the following

equation in the nondimensional form
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where A. (A..) denotes the Debye length for electrons (ions)

De ''Di
and L is the density seale length.

Several parameters used in this presentation are defined

as follows
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Equation (9) has the generalized form of the equation for
homogeneous plasma which has been derived in the previous

paperls).

§2. Derivation of Approximation Equation

In this section we derive a nonlinear equation which
describes the lower hybrid wave propagating along the propagation
cone in plasma with density gradient. We assume that the
unperturbed density no(x) is a slowly varying function of Xx.

To do so let us first introduce the coordinate-streching

defined by
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where A (x) designates the propagation angle in x-z plane, which

will be determined later. Also we expand $(£,n) as follows

Under WKB approximation, namely

d
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we have for the lowest order of ¢
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Since 23%?—— #0 ., A(£) must satisfy the relation
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which characterizes the propagation cone for lower hybrid wave
in an inhomogeneous plasma. We should notice that X reduces
to zero at the position of resonance layer because K,;=~0 at
this layer. This means that in an inhomogeneous plasma lower
hybrid waves have a conical trajectory which bends relative
to the magnetic field so that at the resonant layer it is
nearly parallel to the magnetic fielde)’ll). Therefore eq. (28)
shows that, in the presence of a density gradient in the x-
direction, the x-component of wave number kX increases as the
wave propagates into regions of increasing plasma density.
Near the resonance layer mode conversion can also be expected

to occur.

Introducing a function yY(g,n) as
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the next order equation takes the following form
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The first three terms of this equation constitute the
modified Korteweg-de Vries equation, although the coefficients
A(Z), B(g) and C(f) are not constant but functions of £ through
ng (£). If the unperturbed density is uniform, equation (29)
reduces to the usual modified Korteweg-de Vries equation
derived in the previous paper15). A similar equation (Korteweg-
de Vries equation) has also been obtained for long gravity

20)~21)

waves in an uneven bottom and for weak nonlinear magneto-

acoustic waves in an inhomogeneous plasmazz). It was shown
numerically that such waves exhibit peculiar behaviours such
as damping, growing or splitting depending upon inhomogeneity

profile. 1In view of this analogy one may expect similar

interesting phenomena for eq. (29).

§4. Numerical Analysis

We rewrite eq.(29) in the original coordinates, (X,z) as

oK
Y 3y 2 9 159 °Y A -
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On the basis of eq.(33), let us investigate numerically the
propagation properties of the lower hybrid wave excited by

a periodic source located near the plasma boundary as
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where X,, a and ko, stand for the position of the source, an
amplitude and a wave number for the periodicity of the source,
respectively.
The parameters used in the numerical analysis are mi/me
1/2
2 2
e /Qe ) )

= 1836, Te/Ti = 10, Qe/wPe =1 and w = = wpi/(1+w

“Lu p
In this case, the lower hybrid wave can propagate provided

me/2mi < £ (%) < 1 from eq. (27). The critical values, £ (%)

= me/2mi and f(x) = 1 correspond to the cut-off density and

the resonance one for the lower hybrid wave, respectively.

In the present calculation, the source is assumed to be

located at the position of a density higher than the cut-off

one.

Figures 1 and 2 show the spatial profiles of the lower
hybrid wave and its propagation cones for a linear density
profile, where Figs.l(a) and 2(a) correspond to a weak pump
and Figs.l(b) and 2{(b) to a high pump. In Fig.2, the dark
parts denote large amplitude of ¥ with ¢ > 0.

Now, the resonance layer is at the position of f(x)=1
as is shown in Fig.l(a). 1In this case the resonance cone
singularities become asymptotic to this layer. We see the
conical wave packet propagation. We note that kz is constant,
and is fixed by the boundary condition imposed by the periodicity
of the source. Note again the shortening of the wavelength,
21r/kx toward the plasma center due to the increasing density.

For axial density gradient, kz will increase as the density

__'lo_



decreases axially from eq.(1l1l). These behaviour is the same

13) and Bellan and Porkolab}G)

as that found by Simonutti

For the case of high power pump shown in Figs.1l(b) and
2(b), we also note that such waves exhibit peculiar behaviour
such as growing and splitting due to the compitition of density
inhomogeneity, density depression through the ponderomotive
force and the finite temperature effects. As is seen in
Figs.2, the large amplitude wave packeg‘propagates into the
plasma center with the large propagation angle than the small
one in the (x - z)plane, when it approaches the resonance layer.

Figures 3 and 4 show the spatial profiles of the lower
hybrid wave and its propagation cones for a Gaussian density
profile, where (a) corresponds to a weak pump and (b) to a high
pump. The results are essentially same as those for the linear
density profile shown in Figs. 1 and 2 except for the spatial
growth rate due to inhomogeneity and the resonance cone
trajectory.

Also we considered a paticular finite source with 8 periods
distance. The results were qualitatively similar to the case
imposed by the periodicity of the source shown in Figs. 1 and
2. However, the propagation properties will sensitively depend

on the configulation of finite source.

§5. Conclusion

In this paper, we pointed out the general features of
the effects of the finite temperature and the density depression

due to ponderomotive force on driven waves in the lower hybrid
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frequency range in an inhomogeneous élasma.

Using a periodic source model, we have venified numerically
the conical propagation of the spatial wave packet excited by
this source. Thg-results'presented here are in good agreement
with the recent experimental results of Beilan and Porkolabs).

As was illustrdted in Figs. 1 v 4, the solutions insumes

that the wave energy is indeed carried from the source into

plasma center through the propagation cones. However the

P

recent experimental observations suggests that the propagation

cones are distorted by some another effects, nemely, the Landau

4),23) and the particle

damping§)’23) the collisional damping
trapping. It seems to be necessary to extend the present
studies to take account of these effects on the propagation

characteristics.
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Fig.1l

Fig. 2

Fig.3

Figure Captions

Propagation of the lower hybrid wave in a linear density
profile, £(X)=0.95(1-0.95%) for (a) weak pump, a=10">
and for (b) high pump, a=10_1, where L/A, =647 and

ko=41/25.

Propagation cones of the lower hybrid wave under the

same conditions as Fig.l.

Propagation of the lower hybrid wave in a Gaussian
density profile, f=0.95exp(—§2) for (a) weak pump,

3

a=10 ~ and for (b) high pump, a=5x10_ >, where L/ADe=32ﬂ

and kg=2m1/25.

Propagation cones of the lower hybrid wave under the

same condition as Fig. 3.
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