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Abstract

Characteristics of helically symmetric equilibrium of
longitudinal current-carrying finite beta plasma are studied
analytically.

Analytical expression of the rotational transform angle
indicates that the contribution due to the helical component
of the plasma current shoud be taken into aécount in addition -
to the rotational transform angle due to the external helical

current and the longitudinal plasma current.



1. Introduction

When a finite beta plasma is produced by ohmic heating in a
stellarator field, the magnetic surfaces are deformed from those
of the vacuum stellarator field.

On the other hand, if helical perturbations occur in
tokamak plasma, helical structureé appear in the magnetic surface.

In this paper characteristics of helically symmetric equili-
brium of finite beta plasma with current are discussed on the

base of the helical equilibrium solutionsl

2. Solution of Helical Equilibrium
The magnetohydrodynamic equilibrium eQuation of helically
1)~n3)

symmetric system is well known and the flux function

must satisfy the following equation with use of the cylindrical

coordinates (r,8,z) and helical ah@le o = 8 - az,
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where p(¥) is the plasma pressure and B (¥) is the function of
* ]
¥ only, M, being the permeability of vacuum. The prime of (B )
]
and p means the differentiation with respect to Y.

The magnetic field and the current density are given by
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respectively where eq and €, are unit vectors im 6 and z dire-

ctions. There is a relation
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B = arBe + BZ . ( )
Let us consider the following case

B =B, +vy(¥-v) , . (2-7)

P=p(1-¢-) , (2-8)

B =B, , | (2-9)
p=0 , (2-10)

outsiie the plasma. boundary. Here we take ¥ = 0 at plasma center



r = 0. This model corresponds to the case of nearly uniform
current distribution and parabolic pressure diétxibution.

The solution in the‘force free case was discussed in ref.l).
If the effect of the plasma pressure 1is taken_into account, the

flux function Tp in the.plasma region is written asz)m3)
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where A_  is constant , € = (n“0™ - ¥7) v Jg is Bessel function
and In is modified Bessel function. Since Wp = 0 is assumed at

r =.0, the constant AO is

a - a(Bo - YWO) . U P2 1+ 29
2 3 Y . (2—-14)
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The terms of Bessel functions are force free terms.l)
The flux function ?V in the region outside the plasma

(Y > Wo) and inside the helical winding (r < b) is given by
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The flux function ¥ outside the helical winding (r > b) is
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The current distribution on the helical sheet coil placed

at r = b is given by the following equation
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where Iﬁ is the helical coil current per one coil. The coefficient

Cy is fixed by the boundary condition at the r = b and

L
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The boundary conditions at the Plasma surface I are



Yo(x,0) =Y, () =Y, (2-21)
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and these conditions fix the coefficients of Eo' Fo’ An' Dn'

The boundary surface itself shoud be determined by egs. (2-21)
-(2-23). Generally this boundary value problem is difficult to
be solved. We assume that the boundary surface is not much
different from a circle, which is given in the form of r = rj +

A(ro)cosl¢ (A <<r0)'and only the zeroth and f-th harmonic terms

of the flux function are dominant, that is,
“Y¥(xr,9) = Wo(r) + ?%(r)cosl¢ R (2-24)

where v, | < el -

Then the boundary conditions are reduced to
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When the plasma radius Y, is much smaller than the helical
pitch a—l, that is |ar| << 1, the modified Bessel function can

be expanded and the solution are
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3. Characteristics of Equilibrium
When the following quantities are introduced,
R 1
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the linear helical field with the pitch parameter o corresponds
ts 2 toroidal helical field with the pole number £, the field

perizcad m and the major radius R. The variable ¢ is expressed by




L = 26 - % z. The quantities q are approximately equél to the
safety factor and B is approximately equal to the beta ratio
at the axis.

' With use of these quantities, the magnetic flux functions are
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The zeroth harmonic term of the magnetic field B° in the

plasma becomes

Br =0 R (3-9)
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r
= - m 0,2, B -

The second term of eq.(3-11) is the paramagnetic term of force
free current and the third term of eq.(3-11) is that of the
diamagnetic current.

Rotational transform angle can be obtained by the average

4)

method as follows:
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when the magnetic field is expressed by B = Bzez + brer + bee6
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+ bzez. The notations a and <a> mean
L
a=1r1"1 I adz , (3-15)
o
z z
<a> = J (a-a)dz - I (a-a)dz . (3-16)
o o
The rotational transform angle ( is expressed in the form
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The first term is the term due to the plasma current of the
zeroth harmonic component and the second one is the term due to
the external helical current. The third one is the term due to
the plasma current of the g—-th harmonic component. The ratio of
the magnitude of the third term to that of the second one is

2
mq
the finite beta effect.

. This ratio is not very small. The fourth term represents

When the rotational transform angle due to the plasma
current has the same direction as that of the external helical
current, the radius of the separatrix becomes small as the plasma
current increases. When q becomes to a critical value

2
m (3-19)

a, =
1+ £

the magnetic surface shrinks to a point, When & =2 , m= 1
and B is negligible, q = 2 becomes already critical value to

shrink the magnetic surface in this configuration.

§4. Conclusion

The magnetohydrodynamic equilibrium of a current carrying
plasma in helically symmetric system is studied analytically.

It is shown that the total rotational transform angle
consists of four components; that is, the component due to
the plasma current of zeroth harmonic, the component due to
external helical current, the component due to the plasma current
of helical component and the component due to the finite beta

effect.
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The effect of the plasma current to the magnetic flux func-
tion is clarified in the case of nearly uniform current distri-

bution and parabolic pressure distribution.
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