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Abstract

A dispersion relation describing the parametric decay of
a lower hybrid wave into an electrostatic drift wave and a
drift Alfvén wave is derived for an inhomogeneous magnetized
plasma. Particularly the stimulated scattering of a drift
Alfvén wave in such a plasma was investigated in detail.
The resonance backscattering instability is found to yield

the minimum threshold.



§1. Introduction

There is experimental evidence that parametric processes
play an important role in the R.F. heating of magnetically
confined plasmas (Porkolab et al., 1976; Porkolab, 1976).

One frequency range which has recently received a great deal

of attention is the lower hybrid resonance frequency (Porkolab,
1976) . This frequency range is particularly useful because

it interacts directly with the ions.

In the previous paper we developed the theory of parametric
instabilities driven by a finite wavenumber lower hybrid
wave pump in the homogeneous magnetized plasma and we also
discussed the resonance backscattering instabilities and the
oscillating two stream instabilities (OTST) in such system
(Sanuki and Schmidt, 1977, Sanuki et al., 1976).

Recently the parametric decay of a lower hybrid wave into
an ion acoustic wave was investigated for a plasma with a
density gradient (Wersinger et al., 1976). However, in an
inhomogeneous magnetized plasma, low frequency perturbations
with sufficiently long parallel wavelengths tend to be electro-
static-electromagnetic modes because of coupling to Alfvén
waves. Parametric decay instabilities can result because of
coupling to a drift wave (Sundaram and Kaw, 1973) or a drift
Alfvén wave (Bujarbarua and Kaw, 1976) depending on the angle
between the direction of propagation of the low frequency
mode and the magnetic field.

In the experiments by Hooke and Bernabei, and Moresco

and Zilli, they observed the generation of beat frequency



we * w; (where w, denotes the pump frequency and w, is of the
order of the drift frequency) which they attribute to a nonlinear
mixing of lower hybrid waves and drift waves. These modes are
potentially dangerous from the point of view of plasma confine-
ment since they may lead to macroscopic motions of the plasma.
Investigation of the couping between a lower hybrid wave and

a drift Alfvén wave is the object of the present paper.

§2. Three Wave Interaction in an Inhomogeneous Magneto-Plasma

Let us consider a weakly inhomogeneous plasma with a
uniform background magnetic field. In the simple slab
geometry the density gradient is chosen along the X—-axis
(VNO/N0=(—K,0,0)) and the backgound magnetic field is oriented
along the z-axis of the Cartesian co-ordinate of system
(§0=(0,0,B0)). A high-frequency oscillating electric field
EO is applied obliquely to the magnetic field. The pump wave
couples with the density fluctuation in a low frequency mode
(w, i) and produces currents and magnetic modes at the high
fregquency side band frequencies (wi=wiwo, Ei=§iﬁg). The side-
hand modes interact with the pump mode to produce a pondero-
motive force at frequency w, which can enhance the original

perturbation and thus lead to an instability.

High Frequency Wave Equation

The high frequency waves satisfy the wave equation
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where JL 1s the linear current density
-> -> ->
J; = eN(x)(vi - ve) , (2)

with N(x) the equilibrium particle density 3i and 3e the first
order ion and electron fluid velocities respectively. The

nonlinear current density ENL may be written approximately as

-> > ->
JNL - e(nsi Vel T Pge vfe) ' (3)

where the index s and f stand for law frequency and high
frequency wave quantities respectively. Note that ws/wf<<1

consequently nfzs terms are small and hence have been neglected

The fluid velocities can be expressed in terms of the

electric fields. 1In particular if all quantities are Fourier

decomposed in time
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where y is the mobility tensor in the magnetic field and we
also assumed the Fourier transformation for all quantities in
the form expliwt - iﬁ-;]. So the space and time Fourier

transformed eq. (1) becomes
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Hence the f index has been omitted since the only low.frequency

->
guantitiecs are the particle densitics. The E—s on the left



hand side are the (w,f) Fourier components while the one on
the right hand side is clearly a different Fourier component.
Setting the 2,h,s, to zero gives the linear high frequency
wave dispersion relation while the r.h.s. represents the

coupling of the low frequency wave to the high frequency sidebands.

Low Frequency Wave Equation

Equation (5) shows how low frequency density fluctuations
beating with the pump wave give rise to sidebands. On the
other hand the beating of the pump with the sidebands produces
the low frequency wave.

The nonlinear current density

> -> >
J, =L g(Nv_ + <nfvf>) ' (6)

where the summation is over electrons and ions, and the bracket
< > indicates fast time scale averaging. The equation of

motion for electrons is
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where the last two terms are nonlinear, representing bigh freguency

waves driving low frequency ones at the beat frequencies.
The inertia term on the left hand side will be ignored as usual.

Fourier decomposing this equation and the equation of continuity.
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In the absence of nonlinear terms one has
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where v is the modified mobility tensor, v =y ‘E_.
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Applying Vo OO eq.(9) and using eq. (10) yields
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Substitution of eq. (11) into eq. (6) gives
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where $pe is the equivalent ponderomitive electric field
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A similar expression holds for the ion current
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and
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Finally the electric field obeys the wave equation
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The linear eigenmode satisfies the equation
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Coupled Mode Equation

The low frequency wave couples back to the high frequency

waves (eq.(5)) via the low freguency particle density. From

the equations of continuity we have
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Here ip are functions of the fast variables. The fast velocities

are determined from eq. (4), while



ng = N(x) (X - iKéX)-i?f ) (21)

The equations (4), (5), (20) and (21) constitute a closed
set of equations, yielding the dispersion relation for W -
Of course one must specify the high frequency and low frequency
waves under consideration, so the mobility tensors can be calculated.

The amplitude of one of the high frequency waves (the pump) must

also be specified.

§3. Parametric Decay of Lower Hybrid Wave Into Drift Alfvén
Wave
As an example we shall cxamine the decay of an electrostatic
lower hybrid wave into lower hybrid sidebands and a drift
Alfvén wave or an electrostatic drift wave.
Now we shall assume that the pump wave is in the x-z plane
(kOX >> koz) and we also restrict ourselves to low frequency
perturbations in the y-z plane (kx=0) with ky >> kz. Since
the high frequency waves are electrostatic §f=o eliminating
the <§f X §f> terms from the ponderomotive force. Equation
(5) is simplified by the elimination of the ?X(gxg) term.
The low frequency waves will be in an electrostatic drift wave or
a drift Alfvén wave (w << Qi), so the displacement current in the
low frequency wave equation may be ignored. It follows then from
the low frequency wave equation that V°35=0, consequently the low
frequency wave is quasi neutral with ng; z Nge x Dg- Under these
conditions eq. (5) becomes
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For the high frequency waves, the mobility tensors can be

simplified to be
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where gO was chosen in the z-direction and g‘ denotes the

unit dyadic.

For the low frequency wave, the mobility tensors are
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Also the operator K becomes for the low frequency mode with

w > w,
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where Va and c, are the Alfvén and the ion sound velocities,
and w*j=TjK/|e|B'ky is the drift frequency for j-species of
Plasma particles respectively.

The linear dispersion relation for the low frequency mode

follows from |¥| = 0, to yield
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Now g has to be inverted and the matrix multiplications

prescribed by one of egs.(20), say eq. (20a) performed to yield

n .

s The ponderomotive fields are calculated from the pump

field EO and the sideband fields Ei=E(wiwo), where wy is the
pump frequency. The calculation is lengthy but straight-
forward and we omit the details.

For the parametric decay of a lower hybrid wave into a

drift Alfvén and an electrostatic drift wave branch, one finds

the dispersion relation as

/
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where VO=EO/BO, mLH2=wpi2/(1+ pr ), w, = w * wp and k =ktk
o +

respectively.

Let us now consider the parametric decay into a drift
Alfvén wave. Retaining only the leading terms in eq. (27), we
can approximate the dispersion relation (27) in the dimension-

less form

{Q(Q+iy,)-2-B2}{(Q + iy, -0)® - 8%} = T'(Q-a) , (30)
with
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where Q=w/w,, 82=vAzkzz/w*2. For simplisity, we assumed
Te=Ti and we also introduced the natural damping of the slow

wave Y, and the pump wave Y, in a phenomenological manner.

§4. Modulational Instabilities

Writing Q=x+iy we can separate equation (30) into its

real and imaginary parts

x* = y? - yay - x - 8’

= I'(x - a) [(x-a)?+ y* - y,* - &
F(x,y)

' (34)

2xy + Yax -y

o7 {2y, [(x-a) ?+y2 )1+ (x-a) 2y + yl+yy,® +y82}
F(x,y)

, (35)
where
F(x,y) = [(x-a)?-(y+y2)?-82]%2 + 4(x-a)2(y+Y2)% _ (36)

It is straightforward to obtain an estimate for the threshold

power (F=Fe, y>0) from the above equations. Then we get
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with the critical frequency X given by the relation
2 2 ‘ YIXC 2 2 2
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The threshold expression (37) can be further minimized with
respect to 6§ to obtain the minimum power necessary for parametric

instability. This occurs for 3 rc/aa = 0, which yields

X ~ a - 8 . (39)



This is the condition for the resonance backscattering instability
to occur, which was discussed in the previous papers (Sanuki
et ai., 1977). Then the minimized threshold is given as

YszXc

Fm = = **“i—*— . (40)

One can express eq. (40) in terms of a minimum field amplitude
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m
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where we used the approximate relation xc=1+ w7 derived

from egs. (38) and (39).
Just above the minimum threshold equations (34) and

(35) can be linearized to give in the case of w>w, and
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AT
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I11’(’\
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where Ax=x—xC is the frequency shift in the real part of
y the growth rate and AT= TI'- lrml .

Thus we conclude that there is an upper limit of the
electric pump field for driving a drift Alfvén wave unstable.

The maximization arises because the growth rate y increases

...13._



with AT and the real part of frequency x decreases with AT,

so that the damped nature of the drift Alfvén wave at the large
I'is a direct consequence of the change of the sign of AT at

I - Fm. These results are qualitatively similar to the theoret-
ical results obtained for modulational instabilities corresponding
to the parametric decay of a plane electromagnetic wave into

a drift Alfvén wave (Bujarbarua and Kaw, 1976) and for the

parametric excitation of a drift wave by ion-ion hybrid wave

(Satya et al., 1975).

§5. Conclusion

The treatment employed in the present paper is similar to
the one used in the previous study of the parametric instabilities
in the homogeneous magnetized plasma (Sanuki and Schmidt, 1977).
We derived a dispersion relation which describes the parametric
decay instability of a lower hybrid wave into an electrostatic
drift wave and a drift Alfvén wave. Particularly the stimulated
scattering of a drift Alfvén wave in an inhomogeneous magnetized
plasma has been investigated in detail. We have also estimated
the threshold and the growth rate for a modulational instabilities
of this mode. It is shown that the minimum threshold is given
for the resonance backscattering instability. It turns out that
there is an upper limit of the pump wave for driving a drift
Alfvén wave unstable. These results are qualitatively in
agreement with theoretical ones obtained by Bujarbarua and
Kaw and Satya et al.

As mentioned in the paper by Sundaram and Kaw, one important

question in applying the parametric instabilities of heating



confined fusion plasmas will be possible excitation of drift
waves, which may, however, possibly lead to enhanced plasma

loss. These problems may be governed by the process discussed

in the present paper.
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