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Abstract

The system of two coupled linear differential equations
are studied assuming that the coupling terms are proportional
to the product of the dependent variables, representing e.g.
intensities or populations. It is furthermore assumed that
these variables experience different linear dissipation or
growth. The deriﬁations account for space as well as time
dependence’of the variables. It is found that certain
particular solutions can be obtained to this system, whereas a
full solution in space and time as an initial value problem is
outside the scope of the present paper. The system has a
nonlinear equilibrium solution for.which the nonlinear coupling
terms balance the terms of linear dissipation. The case of
space and time evolution of a small perturbation of the
nonlinear equlibrium state, gi&en the initial one-dimensional
spatial distribution of the perturbation, is also considered in

some detail.



1. Introduction and Basic Equations

Various nonlinear interaction phenomena in plasma physics
as well as in modern optics are governed by coupled nonlinear

equations of the following form [1,2]
I, = s,I.I ’ (1)

0 -
5F I1 * oqTy = selply o | (2)

where the variables I0 and Il represent positive quantities,
such as intensities or number of gquanta, o and o4 account for
linear dissipation of the variables, and So and sy denote
signs, refering to the effective coupling constants, the
absolute amplitudes of which have been normalized to unity.
The derivatives are taken with regard to two independent
variables.

The system of equations (1) and (2) can be deduced from a
set of three equations for interacting waves under the
assumption that one of the waves is heavily damped or that the
frequency mismatch is large. For this case the third equation
can be solved algebraically and one of the variables in the
remaining two equations can be eliminated, thus resulting in
the set of equations (1) and (2). The quantities I0 and Il

denote normalized intensities, defined by
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where a, and a, are wave amplitudes, cij coupling coefficients,
v, and v, group velocities, v, and Vo linear damping and group
velocity of the wave which we have formally eliminated, Aw and

Ak frequency and wave-number mismatches, defined as

Aw

1

Re (wy) - Re(wl) - Re(w,) , (5)

Ak ko -k, - k

0 1 2 ' ‘ (6)

and where in Egs. (3) and (4) S, and s, refer to signs as Egs. (1)
and (2)
The independent variables £ and n are related to the space

and time variables x and t by the relations

£ = x —-vot , ‘ (5)

X - vt , (6)

=
il

and the coefficients oy and oy are defined by

2v0
(o3 = — ’ ’ (7)
0 v0 vl
2v
1
a, = — ' (8)
1 v1 vo

where Vo and vy refer to linear dissipation (or growth) of

the corresponding waves.



2. Description in Terms of a Potential

As seen from Egs. (1) and (2) the structpre of these
equations is such that the evolution of the solutions is
governed by the interplay between the nonlinear coupling terms
and the remaining linear terms. The signs So and Sq of the
nonlinear terms are therefore essential. Different combinations
of signs correspond to different types of solutions and to
different physical situations.

When discussing mathematically the solution of Egs. (1) and
(2) it may be convenient, however, to make use of the variables

Ui' defined by the relation [2]
I, = s;U, . (9)

Since in (9) Ii always denotes a positive quantity, we have,
however, to make sure that the sign of Ui is such as to
'correspond to the real physical situation. Egs. (1) and

(2) now take the form[2]

18}

0 -
BUl
sz'- + G.lUl = UOUl . (11)

It is convenient now to make use of the operator equivalents



—0oN_09 _aon (12)

—a1E 9 oy & (13)

We then have from Egs. (10) and (11) that

—QgNn_9J ,_ QoN = o~ 3 01§ =
e n (e UO) = e (e Ul) U.U

P13 071, (14)
or accordingly

aon+a1£UO) -

(e*on+a1€ uy) = ontar gy 4

0Y; (15)
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The form (15) suggests the introduction of a potential function

S(£,n), such that

aon+oi1&,., _ 38

e U-O - BE r ‘(16)
Gg'ﬂ"‘(l]& - 9S

e Ul = . (17)

It should be remarked that the potential function S that
we have introduced here is related to the function U of
reference [2] by S = ex+Y(l+U).

Let us introduce the normalized variables

X =08 , (18)

Y = aen . (19)

In terms of these variables the equation for S becomes,

from Eq. (15)



3%s_ _ - (X+Y)3S 38

3X0Y 3% 3Y (20)
The functions U0 and Ul can then be expressed
- -(X+Y) 38
Up = @ 3% (21)
_ - (X+Y) 2
Ul = ao.e S—Y— . (22)

3. Special Forms of Solutions

Let us try to find solutions of Eq.(20) in terms of the

variables
Z =X+Y , (23)
W=X-Y . (24)

=+ S (25)
and the equation for S can be written
o 28 _ om2((35)7 | (257 | (27)



In terms of S(Z2,W) the functions UO and Ul can be

expressed
_ -2, 9S8 9S
UO = ale ( 3% + W ) ' (28)
_ -%Z, 9S _ 38 ‘
Ul = ale ( 3% W ) . (29)

Before studying explicitly solution which depend on both
Z and W let us consider cases where the potential function S
depend only on Z.
Case(i): s = e? (30)

[}

0. In this case we have

in

which satisfies Eq. (27) with 3/3W

from the expressions (28) and (29), that

U, = ay (31)

U =a0' , (32)

which corresponds to the equilibrium situation, where the

nonlinear coupling terms balance the linear dissipation terms.

Case(ii): S =0 (z) , where ¢ = e? (33)
In this case we obtain
B-ehw (34)
2
95 - &% 1 (¢) + 2% (1) (35)
922

i
o

and from Eq.(27) with 3/93W



eZot 4+ e2Zgn = 7% (%92

which can be written

Cq)" = (q)l)Z - 9

or

L
§ (9 -1)

1
=z - (36)

Eg. (36) can be integrated with respect to ¢ after first

splitting the LHS in two parts

o1 3% ) o = % . (36a)

From (36a) we then find

' —
lnip——&)—.-——i = lnz+ C ,

where C is constant, and we can then express ¢' as

o' = ‘ (37)
and
_ 1
Ss=0¢=-5 in|1l-Cz| + D,

where D denotes a constant of integration. From Eqgs. (28) and (34)

we then have with Eq. (37)

%1

U0 1-C exp 2 ! (38)
a
_ 0

Uy = 1=¢ exp 2 ! : (39)



where 2 = X + Y .

The solutioﬁs (38) and (39) correspond, in fact, to a
special case of the solutions found by M. Yamaguchi (4], by
means of Hirota's method [5]. Our derivation of this case is
however, different and slightly more direct, which may justify
to present it here with some further discussion on the
solutions.

Expressed explicitly, in space and time variables, we find
from relations (9), (18), (19) with (5) and (6) that the
normalized intensities I0 and Il can be written, in this case,

as

%150
I0 " T-¢C exp[ao(x—vot)+al(x-vlt)] ! (40)

%0%1
1-1T<=¢ exp[ao(x-vot)+al(x—vlt)]

. (41)

Let us analyse briefly some features of the solutions (40) and
(41) .
Case(ii,I): &1l , ( @) Sgi 0y Sy positive) .
For t=0 we have the initial functions
a;8,

IO(XuO) = I=¢ exp[(a0+al)X] ! e

%051

Il(x,O) = I=C exp[(a0+al)x]

. (43)

In Figure 1 we have indicated the characteristic
behaviour of the expressions (42) and (43) by plotting Io(x).
We notice from Figure 1 and expressions (42) and (43)

the explosive type of singularity that may occur.

-9 -



Introducing the parameter ), defined by

o,V A,V
A = 0 0: 1'1 (44)
%o %

we can write the space and time dependent solutions accordingly

%150
Io(xlt) = i=C exp[(ao'*"al) (X‘)\t)] ’ (45)
aAS
_ 0”1
Io(x:8) = Toexpllugta,) -A0)T (46)
where we notice that
x - At <—Y 1n(1/0) (47)
a,to
0 "1
corresponds to the domain of interest in this case. (If on the

other hand we consider a1847%Sy negative then the domain
opposite to that given by (47) should be considered) .
Case(ii,Ir): ¢C¢c>1 , (also; aosl positive),

The region of interest in this case becomes

-1
X - At < InC ,
agtey
1 1
or t > X(X+a—:a— in C) .

071

The solutions tend to I0=als0 and Il =08y, respectively as
time tends toward infinity.

In Figure 2 we have plotted the time dependence of I, for
this case, (for comparison we have also shown the curve for

%S, negative).

- 10 ~



Case(ii,III): C < O, (also;aosl positive)
The solutions in this case become
%150

o = v ¢ expl(agta) (xxE)T (48)

aosl
1 - Ic exp[ (ag+a,) (x-AE) ] ’

(49)

with characteristic behaviour as shown in Figure 3. The
solutions which we have discussed in Case(ii) have the form of
particular statioﬂary solutions in terms ofvthe variable
(x-At).

Let us now consider another case where the solutions
depend on Z as well as on W, defiﬁed by relations (23) and
(24).

Case(iii): & = e?o(wW) (50)

From Eq. (27) we obtain

Zov = e %1 (o) 2- (292

ez¢~e
or 0" = 92—~ (9')2 . (51)

Considering case for which ¢'#20 (for ¢'=¢"=0 we have the

equilibrium solution (i)), we notice that by using the identity,
[ (DZ__ (¢|)2]| = 2®|(¢_¢n)
combined with relation (51), we obtain

{1In[ - (¢')2])}'= 20' . (52)

-11 -



By integrating Eq. (52) we find

92 - (8')? = A exp 20 , (53)

where A is a constant of integration, or

o

dasd
+ (54)

-LB@—‘—A exp (20 )

where W = W, corresponds to ¢ = ®0 .
The relation (54) admits oscillatory solutions provided A
is positive and small, which is easily seen by writing Eq. (54)

in terms of a nonlinear potential
V=1(aexp(20) %2] . (55)

The equation describing the corresponding "particle

motion" will be
l 1y 2 —
5(@ ) + v=_0 . (56)

In figure 4 we have plotted the nonlinear potential (55)
indicating that Eq.(56) allows for "particle oscillations”
in the negative potential trough QO < <~®l (shaded negion).
For negative values of the constant A we find that (dé/dw)

will be a growing function of ¢, and no oscillations will

occur.

- 12 -



4. Perturbation of the Nonlinear Equilibrium Solution

As discussed in Case(i) the coupled equations (10) and
(11) have equilibrium solutions expressed by Egs. (31) and (32)
= q

as U and U, = g+ Let us perturb this equlibrium and see

0 1
if we can find oscillatory solutions and how to describe them

in a general form.

Let us write Egs.(10) and (11) in the form

) =

g-ﬁ' 1n UO + ao = Ul ' (57)
2 Invu, +a, =uU (58)
o9& 1 1 o

By making the change of variable

u, = Ul/a0 p (59)
u, = Uo/al ' (60)

and further using the notations X and Y introduced in Egs. (18)
and (19) we can transform Egs. (57) and (58) into a convenient
form for our discussion. In this context we denote the deviations

from the equilibria u, = 1 and u, = 1 by

A, =u, -1 ' (61)
A =ul—l . (62)

We then obtain the equations

Sglin (1481 = 8, (63)

- 13 -



3 -
sx[in (1+8)1 = 8y (64)

We can write Eqgs.(63) and (64) for the perturbations in

the simple form

BAO
YAl Al(A0+l) , (65)
3Al
X = AO(A1+1) . (66)

Assuming |44|<<1 and |a,l<<1 we obtain the following

linearized equations

BAO
A (67)
A
1 _
= = by - (68)

We now look for solutions of Egs.(67) and (68) in the form

by = exp( ikyX - iky¥) (69)
Al = -ikYexp( ikXX - ikYY) p (70)

and find from Eg. (68) the condition
(71)

kaY =1 .

We therefore find that by using Egs. (5), (6) and (13), (19) the

perturbation Ay can be written explicitly as

by = €exp i[(kxal—kYao)x - (kxulvo—kYaOvl)t] , (72)

- 14 -



where kx and kY are related according to Eq.(71).

We now assume that initially, at t=0, the perturbation AO
is given by the function G(x), i.e.

AO(X.O) = G(x) = feiqxq(q)dq ' (73)

where g(q) = 7% fe_quG(x)dx ,

(74)

Comparing Eq.(73) with Eq. (72), we notice that, regarding kX as

a Fourier integral variable,

d and kX are related by

(75)

and that generally we have

{
. . 1
Ao(x,t).= Jexplqu—lkx(alvo— ;~; aovl)t]g(q)dq

+ (76)
X :

with g(q) given by (74).

Eg. (75) has two solutions for kX (or kY), i.e.,

alkx = {qt/q%+ 4a0al}/2

(or agky = -{q " YqZ+ 4a0a1}/2)

L4

and when substituted into (72), both satisfy Eq.(67). This
indecates that in order to determine the sclution of Eq. (67)

we need another initial condition. We here assume that

[ 3E B0t ] g = -iix) = -i)e'®n(@ag . ()

- 15 -



Writing Ao(x,t) as

Ao(xit)

= jA+(q)exP ilgx - {q(vytvy)/2 + vq2+4a0uz(v0—vl)/2}t]dq

+ fA_(q)exp ifgx - {q(v0+vl)/2 - /q2+4a0al(v0—vl)/2}t]dq
(78)

we determine A, (q) and A_(q) from Egs. (73) and (77) as

h(q)—g(q)q(v0+v1)/2

A, (@) =3 gl + : (79)
/q2+4a0al(v0—v1)
1 h(q)-g(q)q(vy+vy)/2
A_(q) = 3 glg) - . (80)

/q2+4a0al(vo—vl)

Introducing (79) and (80) into Eq.(78), we can obtain the
complete solution of initial value problem, (67) - (68).

Let us here as a special example consider also the very
simple case for which

Ao(x,O) = G(x) = AOc’ a small constant value, and
H(x) = #/o50) (vy=v)) A,

We then have g(q) = 8(q)A, ., h(q) = ¢ /EEEI(VO—vl)G(q)AOC,
and in the integration (76) ky =t/&67az. Therefore

Ao(x,t) = A

0cexp[li/aoal(vo-vl)t]

Remembering the relations (7) and (8) we obtain

Mg (x,t) = AOcexplizi/Tfl)vlv;t] . (81)

- 16 -



From expression (8l) we notice that if the linear dissipation
coefficients 21 and vy have different signs there will be
oscillations — relaxation oscillations — of the small initial

perturbation around the equibrium level.

5. Concluding remarks

We have here given brief discussions of some special
solutions of the equations for the nonlinearly coupled variables,
when these vary in space and time. The coupled equations,
which in the general form describe sé many and interesting
physical phenomena are indeed challenging to study and a
complete solution would be desirable. However, since we are
lacking such a solutions we believe that examples of special
solutions maf shed some light on the properties of these

equations and on the phenomena that they describe.
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