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§1. 1Introduction

In order to study the rf-plugging of plasma particles
which are magnetically confined in open-ended systems, both
experimental and theoretical efforts have been made continu-
ously, in particular, intensively in these several years}) Among
these works dealing with the rf-plugging, there are some theo-
retical works which consider along which branch of normal modes
a pair of externally applied potentials oscillating near the
ion cyclotron frequency mci should penetrate, producing an rf-
field mainly along the x-direction perpendicular to the static
magnetic field Bo=eZBo(z) (eZ is the unit vector along the z-
axis), into the cusp regions of an open-ended systemﬁmQEEre it
is known that the excited normal mode can be an electrostatic
ion cyclotron wave with an electric field nearly parallel to the
x—directioé? )And this wave creates the ponderomotive forces to
repel plasma particles (especially ions) escaping through the
cusp regions, back to the main region of the system,_sgmultaneous—
ly heating ions through a resonant absorption of the rf—p0wer7)
These theoretical works, however, seems not to consider what
function of x the potential of the externally excited normal
mode should take as penetrating and simultaneously rf-plugging
an inhomogeneous sheet or slab plasma. Here, for convenience'
sake, we denote by a “ sheet™ plasma a bounded thin layer whose
half thickness L is comparable to the ion lLarmor radius ©i, and
by a “ slab® plasma a bounded one with L being considerably
greater than Py-

In this paper, on the basis of the warm fluid description

for inhomogeneous plasmas, we will therefore focus attention on

the derivation of the wave form of a normal mode which will be



expected to penetrate an inhomogeneous slab plasma as a non-
linear electrostatic ion cyclotron wave. The normal mode is
supposed to be excited by a pair of externally applied poten-

tials oscillating near but above w ., and having a weak spatial

ci
inhomogeneity parallel to the magnetic field lBo=ezBo where

Bo is bereafter constant in space and time. This parallel
inhomogeneity of the applied potentials naturally produces

a small but finite parallel component of the electric field

of the electrostatic ion cyclotron wave excited within the slab
plasma. The main part of the electric field is, of course, in
the x-direction along which the inhomogeneity of the plasma
density is chosen. 1In order to make it possible to analytically
find the required wave form as a function of X, we will make

the following two assumptions: i) A high density assumption

appropriate for thermonuclear fusion plasmas will be made by

2
c

wpoi(x) and wpoi(O) are the field-free local ion plasma frequency

introducing a small expansion parameter w i/wioi(o) where

and its maximum value given at the mid-plane x=0, respectively.
ii) The other practical assumption is such that the field-free
density profiles go(x)ENoo(x)/Noo(O)Ewgoo(x)/wgoo(o)(o=i,e)

are Gaussian with respect to x where Noo(x) are the field-free
plasma densities. We will further assume for simplicity that
all wave damping effects, including the cyclotron damping of the
electrostatic ion cyclotron wave, be neglected. This simultane-
ously means the neglect of heating effects of plasma particles
(especially ions), for example, by means of the resonant power
absorption of the wave in a nonuniform magnetic field7{note that

B, will be assumed to be uniform in this paper).

By the way, the fluid description for the ion can not be used



safely in an inhomogeneous “ sheet” plasma because py is comparable
to the density gradient scale length the measure of which is I,
requiring the kinetic description for the ion. On the other

hand, the fluid description for the ion can approximately be
applied to an inhomogeneous “ slab” plasma because p; much smaller
than L, making small the difference between the density of guid-
ing centers and that of ions themselves, and allowing us to regard
ions as a fluid. The fluid description for the electron can as

well be applied to the inhomogeneous slab plasma under the condi-

lp , _ :l—e_. UJCl _ Zme.ZYeTe < 1
Py 9y lwgel N omy YTy

YoTo/mo, w

tion

N

where pozuo/wco, u =eOBo/moc(o denotes either the

o~ co

ion for o=i or the electron for o=e), Z=eiﬁee| with e_=-e, and
the remaining notation are defined as usual. Note here that,
even in the inhomogeneous sheet plasma (L»vpi), electrons can be
treated in the fluid picture if the condition ]pel/pi<< 1, which
is usually true, is satisfied. We should therefore keep in mind
the fact that the results which will be obtained in this paper
for the inhomogeneous"slab” plasma may not be applied to the
inhomogeneous'Tsheet“ plasma. It is just the kinetic theory
based on the particle picture that gives correct results for the
inhomogeneous sheet plasma, and that tells us how different the
results obtained in the fluid picture is from those obtained in
the particle picture when the limit L - £3 is taken, thugh this
problem will be left unsolved in this paper.

The next section will be devoted to the foundation of the
basic warm fluid equations valid in an inhomogeneous plasma whose

scale size L is much greater than pi(> [Ppl ). Here we note that,



in the inhomogeneous “slab” plasma, L yields a measure of the
density inhomogeneity as well as half the slab thickness. 1In

3%, we will analyze the dynamic responses of the inhomogenous
slab plasma to a pair of potentials ¢ext(z,t) applied externally
as stated before. The analysis will be accomplished by intro-
ducing such a small expansion parameter e Qo/}'e'l‘e that

(e QBO/YeTe)‘?{( 1, in addition to the very small parameter
mgi/wioi(o)(<< 1), where g}o is the amplitude of ¢ext(z,t).

With the help of the method of the Green's function, we will there
derive the potential functions of x as well as of z and t for
both the fundamental and the second harmonic of the nonlinear
electrostatic ion cyclotron wave excited by gbext(z,t). Here,
note that the linear harmonics appearing due to the kinetic treat-
ment will not be included in our analysis restricted to the fluid
treatment. In §4, using both static and dynamic solutions of

the basic equations, all nonlinear static forces such as the
ponderomotive forces acting mainly on ions along both x- and
z-axes will be calculated to show the rf-plugging effect, produc-
ing new, field-dependent equilibrium plasma density profiles
No(x,z). Namely, these rf-plugged density profiles will be
expressed in terms of the potential function for the fundamental
mode of the externally excited, nonlinear electrostatic ion

cyclotron wave. In §5, some interesting results obtained in

this paper will be summarized as conclusions.



§2. Foundation of the Basiec Equations

We start with the warm fluid equations of motion

?2Vo
T b vy = - 22 LB P vre, - an 0 (1)

the equations of continuity

Z—t.-+—£'—'(ndvo)=o y (2)

and the Poisson equation

-——(¢ $)=4an > e4 , (3)

o=i,e

where ¢a(x,z) and @ (x,z,t) are respectively the ambipolar
static potential and the fluctuating potential, both of which are
to be determined self-consistently, and the other notation are
usual. And we assume, throughout the present paper, that all

quantities be uniform in the y-direction:
2 . (4)
z

Let us first separate the fluid velocities \ and the total

densities n, as well into statie and fluctuating parts, respec-

tively, as

N
p—_

vi(x,z,t) =V (x,2) + v (x,z,t) , (5

and

6 -



no(x,z,t) = No(x,z) + 6n0(x,z,t). ' (6)

Approximating

2
5n dn _1_ 6n0

Oy -9 _ (9
1n noazlnN0 + 1n(1 + T)~lnNo + i 2( N )

o o o
2
under the assumption (6n0/N0)2~(el¢l/Ye'l‘e) £ 1, and introduc-
ing the ponderomotive forces and potentials, Fpo(x,z) and
¢p0(x,z), for both ion and electron fluids through such

definitions as

25v eg 2(RgPpg) e
F_ o=—fy .—2-) -2 __90709° 4 ’-_Q@LozF , (7)
po ¢} 2r t m 72 x pox’ my; 2z poz

we can then separate eqs. (1) and (2) into static and fluctuat-

ing parts as

8 2
\'4 _.?._E":_e_o.zg}. + F + W xe - uZQ[lnN 21 <(..n_0) >t], (8)

o 2r m oK po co¥ oz oar o 2 Ns
2 [y +{én 6 =0 (9)
I ‘ovo e t - ’
and
o6v 2 8v,

oV 26V 26v
o] ] ] o]
+ . + 8y _° + dv _- -(dv -
2t \E 21 Vo rXa Vo' r <V° I >t
2 2 2

e. 2 2 6n u. 9 én 6N
= . S - (=8 8 Loy /o9
T TA e C Pt i v I U A AR CTS

5T + é_ . NoévO + 6nOV0+6n06vo- <6n05V0 >t] =0, (11)




where < >t denotes the time average over one period of fluc-
tuating parts, and RO are constants to be determined in §4. The

Poisson equation is as well divided into the two parts:

2
2°¢,

- =4n > e N_, (12)
212 o=i,e ° °

and

2
°p

- —— = 4n e dn_ . (13)
or? 0=J‘.Z,e °e |

Next, solving both perpendicular and parallel compoments of
eq. (8), and introducing the additional static potentials

go(x,z) as

2
_So %o _ %0 0 (f_zzgf> o
By 21 2 ar \ Ng A
we find
Vox = Yoz =0 (15)
ll:g 2
Voy(x,z) = U-c;a—x [BO(¢a+Rc pd+¢sc) + 1n NOJ ’ (16)
and
2 .
7z [BO(¢3+¢po+¢so) + 1ln NO] =0, (17)

— 2_ _ .
where Bof(eo/mo)/uo-eO/YoTo. An integration of eq. (17) now

yields the Boltzmann relations for both ions and electrons:

NO(X’Z)

W = exp[‘Bo(¢a+¢po+¢so)J ’ ‘ (18)



with Noo(X) being independent of z. We can then regard Noo(x)
as the original plasma densities which are independent of the
fluctuating potential ¢(xgz,t) that nonlinearly broduces such
static potentials as ¢a(x,z), ¢po(x,z) and ¢So(x,z). Here we
require the charge neutrality condition for the field-free

densities Noo(x):

Noe(x)=ZNoi(x), ie., > eoN (x)=0 . (19)

o=i,e 00

Further, with the help of eq. (18), the diamagnetic drift velocities

(16) can be put into the form

. ui 2
Voy(x2) = o= 52 [(Ry-1)B fo*1n N T . (20)

2x
Furthermore, eq. (9) turns out to be trivial if we note that
using egs. (4) and (15) yields (9/@#)‘NOVO=O, and also that
(2/0r) -{6n 8v ) =0 because both vy, and v differ from &n
by n/2 in phase (in addition, v, and 8v_  are negligibly
small) as seen in §3. In the same manners as above, we can
show that ¥,-(2/0¥)§%=0 in eq. (10), and that (2/2k)-[6n ¥ -
(dngbv ), ]=0 in eq. (11).

Finally, we have arrived at the two groups of basic
equations: One is composed of the Boltzmann relation (18) with
eqs. (7) and (14) and the static part of the Poisson equation,
(12), with eq. (19). These will be analyzed consistently in §4.
The other is composed of the fluctuating parts of eqs. (1) and

(2) which can now be reduced to, by way of eqs. (10) and (11),



?26v 28v 26vg e, 2¢
€+ by - -{ov = -2 +uw_bvxe
2t 0 °9or /+ mgor 002
2 2 2
(6v__ 2 + sv__ ) uf?i(én" 0 (§—° - (ir-]2
- @y PVoxox 0z9z" 0Oy oo N, 2 | N N, el
(21)

with eqs. (4) and (15) being used, and

2 -[&v N (1 + éﬁ)} 0 (22)
or 00 Ng ’
and also of the fluctuating part of the Poisson equation, (13).
These basic equations for fluctuating parts will be treated in

§3. We now close this section by pointing out that all the

basic equations obtained above are valid up to the second'order
with respect to ¢(x,z,t), and also that even such terms as
contain both (3¢/9j)(2/2k)l¢12 and (9¢/9j)(2/9kﬂ2¢/&9@(j,k,ﬂ=x,z)

have implicitly been retained as will be seen in $§3.



§3. The Self-Consistent Fluctuating Potential of an Excited

Nonlinear Electrostatic Ion Cyclotron Wave

Before analyzing a series of the basic equations established
in §2, we prepare the following situation appropriate for the
analysis. Namely, the inhomogeneous slab plasma is supposed
to be put between the two planes x=%L which are parallel to the
mid-plane x=0, but to be unbounded and homogeneous in the z-
direction as well as in the y-direction. The density inhomo-
geneity is assumed to be only in the x—direction and symmetrical
with respect to the mid-plane as shown in Fig. 1. A pair of
the external potentials, @ _.(z,t), will be fed at x=tL to the
plasma to excite an internal normal mode under consideration.

Let us now make the harmonic expansion for the fluctuating

parts as
B (x,2,1) ¢ (x,2)
évo(x,z,t) = % évo(v)(x,z) exp(—iuwot)+c.c.. (23)

6n,(x,2,t) 5n0(”)(x,z)

Substituting these into eqs. (21), (22) and (13), we obtain

a series of coupled differential equations which determine such

(v) (v)
o

harmonic components as ¢(V), Sv and 6nO . Namely, for

the fundamental v=1, we find

¢(1) (l)

(1). _ %2 (1)_ (1), A1)y _ 22 3
—iw v T = - B, 21 te w, 8V oy eyw dv (1+A ) - o?f' N —_-) ,
(24)
(1)
Sn 2
i o 1 (1) _
—1w0 *—N—;— + Eé‘rr'évo 1\¢0~ 9 (25)

and
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(1)
2
_22% =4n > e Sn(l) . (26)
2 r o=i,e

And for the second harmonic v=2, we find

o 9¢(2)
-2iw°5vc(,2)= - ai— o + echoévéi) ywc 6v(2)(1+A(2))
(2) (1) 2 (l) 2
8 &
2By Ly 2% T 2( ), (27)
ar N 2770 ar 4 or
(2)
Sn
-2iw f‘o + ﬁ-l-o-é% . BVSZ)No + 'Z_I%T; er sv(()l)snglL 0, (28)
and
(2) :
2
- z_é.____ = 4n Z eoénéz) . (29)
'a,r2 o=i,e

(v -1 (v)/s (1)
Here we should note that Ao = wco[2/2x+(6voz /6vOX )2/2z Voy(uzl,g)
in eqs. (24)and (27) will be hereafter neglected as sufficiently small
terms compared with unity, which will be justified after obtain-

(v) ( )

ing 6V and 6v explicitly under the conditions assumed here.
The first task is to solve the set of equations (24) to (26)
consistently with the boundary condition that ¢ (l)(iL,z)z:!:gsofo(z),

when we asgsume

% @ofo(z)exp(—iwot)m.c. at x=L

@ t(z.t)= , (30)
ex ¢ f (z)exp( iwot)+c.c. at x=-L

where go is the constant amplitude of @_ .(z,t), and £ (2)

ext
respresents a slowly varying function of z whose amplitude is

just unity and whose inhomogeneity scale length is h.

—12 —



And with the use of h, we here introduce a quantity K, = bt to

measure the parallel wavenumber of ¢ext(z,‘c). For this

purpose, we explicitly write down 6vgl) as

(1)

(1) _ 2 (1) _ e Y (1) . %ng
GVOX = 'u'):; 6V6y = - ;‘2—-:2—- uO-D-;I-(BO¢ + —ﬁ;‘ ) (31)
o “co
and
; (1)
(1) _ _ % o9 1)  8ng
bvy, = - u—)z-g uogg(ﬂo¢ + v, ) (32)
(o]

with Bo=eO/YoTo=(eo/mo)/u§. Let us here introduce a convenient

function in eqs. (31) and (32) for o=e:
BH(xs2) = B (x,2) + 6al1) (x,2)/N_(x,2). (33)

and a quantity Kx=_-' d':L to measure the perpendicular wavenumber
of the excited fluctuations whose inhomogeneity scale length
along the x-axis is given by d. And then noting such relations

as [(2/23)1n] ¢ ”~Kj (j=x,2),

(1) 2 2 2
Vex | _ Yo 2¢/2 X,~ Yo x —(—2)(p K ? oz (34)
— (0] = 2 = K
évez) wg-wge a¢/3 Z wce KZ Kzue € X b.¢

and l&vé;‘)/évéjz‘)’~(wo /gl )(Kx/Kz)z(wo/KZue) | K | » we can

assume the following approximate form for 6vél):

6v(l) =0

(1) _
ox 8v 0

ey '

(35)

and requiring the relation ¢)(x,z)=¢(z) so as to be consistent

with évéi)= 0, i.e., a¢/3x=0,'

13—



svil) = —i(u2/w))(a/a2)8 9(2) (36)

2 2 /.2
provided that lperl < pin<< 1 and (KZ/KX) & 1l or d°/h°K 1,
and also that Kz’ being a measure of the small parallel wave-
number of the excited fluctuations as well as that of the
excliter ¢ext(z’t)’ should satisfy the condition

u; <€ qu/KZ < u. (37)

It is noted here that this condition (37) allows us to neglect
the cyclotron damping of a wave component along Bo. Further,

we here show, using eqs. (20), (34) and (121), and R, = ~wg/w§e

(1) 2 2,,.2
from eq. (120), that ,Ae l“’Pe, (d¢/dx )lnNOe(x), peLon ~ 0
compared with unity since tpel< p; K LOn where we have, in the
absence of ¢%xt(z’t)’ defined as L;i(x) = -(d/dx)1ln Noo(x) for
both 6=i and e. Now, substituting eqs. (35) and (36) into eq.

(25) for o=e together with eq. (33), we approximately obtain

(1) 2
e __ %1 2 (1) :
o R EER L

where Be¢(z) has been neglected compared with -B_ ¢(l) on the
r.h.s. of eq. (38) because of the sufficient smallness of

(1) V2 " |
I¢(z)/ ¢ | ~ (w /Kzue under the condition w & K u_. In the

above order estimation, we have also used such an inequality as

[L,, ]'l«: K,, which can be shown to be satisfied using eq. (125)
where L (x, ) = -(2/23) lnN (x,z) or (x z)
= -(2/23)lnm2 (x,2)(j=x,2z) with the deflnl ion w; (x,2)= 411‘ (Y,A)/m.

14 —



and the requirement (39) being employed. Further, making use
of eq. (38) in eq. (26) and requiring the charge neutrality

condition in the presence of fluctuations:

8)
Ne(Xyz) = ZNi(X’Z)y i.e., E eONO(X’Z)ZO ’ (39)
o=i,e
we can express the ion density fluctuation 5n§l) in terms of
¢(l):
(1)
dn:
i (1)
= - )(3 of , (40)
Ni De rz
with A2 (x,2)=Y T /[41e2N_(x,2)]. Substituting this into egs.
(31) and (32) for o=i immediately yields
i i : 4Ty 2 (1)
(1)_ o, (1) W €1 2 iti 5 2
bvili= =Byl = ——— = —(1 + —— - —) (41)
ix wci 1y w2—w2. my 7x Z‘Ye’l‘e 2 ¢
o ci
and
iw_ e, Y. T. (1)
WP oD faegtog Y, w)
wy i0dz e e or

where we have employed such relations as Biug

=ei/mi and

BeADe(x,z) = BlADﬁk z). Here we note that the neglect of

‘Ag ) in eq. (24) turns out to be justified since we can estimate
(1) _ 2;-2 . . 202 2

as A i plLon 0, using eq. (122) and Ri‘wo/(wo-wci)'v'o(l)

from eq. (120). With the help of eqs. (40) to (42), the equation

of continuity (25) for the ion leads to a wave equation govern-

ing ¢(l)(x,z). That is,

~ 15—



2 2 2
pi X wo—wlax 0z wg 0z
2 2 2 2
e ey (22, w2 % 2y G, 00 )
. ng 0% °P-uf, Dx 0z wg 0z wii 2x° 2

(43)
where we have used A (x z)= u2/w2 (x,2z) and A (x z)=C 2/w 2(x,2)
] Pl 9 14 se Pi ’
. 2_ 2_n2
together with cse-zveTe/mi and cs_cse(l + YiTi/ZYeTe). And the
terms with a parameter A’ in eq. (43) are assumed to be of the
order (K C_/w )°€ (K C /v )°< 1, i.e., (K /K )°€ 1, and those

with another parameter EJz to be of the order Ksze/w )2=

2 2 2 _
(Kxcse/ /wpl'v cl/wPl ~ W / p01<: 1 with wPOO(x)

4ne2N

o oo(x)/mo’ where both parameters A’and 61 will later be

taken equal to unity. The term with A*(=1), being of the order
(Kzui/wo)z, will be discarded under the assumption (37). By
the way, making use of eqs. (125) and (126), we can express the

field-dependent, local ion plasma frequency wPi(x,z) in terms of
8 (x,2):
wpy N
1
w 2 =N = exo{-6y 1BeI[ 498V xi2) + ]}
poi

1 -6 1Bl [#ag @ x2) + 0], (40)

with

2 2 21 (1))°
(1) ,'ﬁe' Cs 3¢(1) ,CS 2?5
¢nn(¢ 7X’Z)— 4 . 2 +A Egaz

f¢(l), ] (45)

where the constant C is at most comparable to ¢nﬂ(¢(l),x,z) or

X

less than it. And the term with Enﬁ(zl) is supposed to be of the



order ‘Be¢(l),2<f 1. Note that we are not assuming the severer
condition [Begb(l)l € 1. Let us now substitute eq. (44) into
eq. (43) and then make linearizations with respect to both €
and Enﬂ’ not with respect to A’ so as to include terms of such
orders as GIA’ and Enﬂk’. Thus, we arrive at a nonlinear
partial differential wave equation which can be reduced to the

following form solvable by iteration:

°C(l);é(l)(x,z)=_/\(_al)(¢(()l),x,z) +A$L]Q')(¢c()1;)x,z) , (46)

with

2 2
A&l)(¢( Xy2)= 61—2—9——{31_2_(22_ 1 dNoi(x):l

wPoi(x) Cg 2x 19x Noi(x) dx
2 w2 2 2
#2o0 ) L T 4, (n
s

and

Iq(iz (¢é12 x,2)=6 IRl ’ (48)

where the lowest order potential ¢(i)(x,z) is governed by

LV (2,202 [ L dNoi.f”].?.
x  Nyj(x) dx 2x

2_ 2
ws ~w c2
+_...°__2L1(]_+)\'—g- }¢ )(x,z)—O . (49)

C
s

From now on, let us assume the following, realistic Gaussian
forms for the field-free density profiles g (x) and the parallel

)
potential profile f (z) of the exciter (30) Namely, we write

—17 -



Nog(x)  uwl (%) 2
olx) =20 = FO T oxp(- X5 (ot e, (50)
00 wpoo(o) 2d
and
£ (z) = exp(-2%/2h°) (gf (0)=1) , (51)

accompanied with the condition i’/ h < 1.

And then we assume such forms as

¢(l)(x.2) = @(l)(x,Z)fo(z) , (52)
6 (x2) = ¢V () (2) (53)

since the variables of eqs. (46) and (49) are approximately
¥* )
separable provided that both @%1)(x,z) andgfél)(x,z) are much

more slowly varying functions of z than fo(z) under the condition

[(2/22)1n |1 (x,2)]| = |(@/22)10 | PSP (x,2)]| € K, . (54)

which will later be shown to be true. Here remember that we

also have the condition K§<< K)2{~ [(a/ax)ln}é(l)(x,z)”?
’xga/ax)ln.]@él)(x,z)ljg. Substituting egs. (50) to (53) into

eqs. (46) to (49) with eq. (45), discarding all terms proportion-
al to [(0/22) ¢ (x,2)12, (0%/22°) $'P (x,2) ana (6%/222)@L) (x,2),
and introducing the new variables &= x/d and = z/h so that

eqs. (50) and (51) are rewritten as

form,
*We don't assume the form fo(z):coskzz, though thisY is mathemat-

ically ideal since the variables of eq. (4%)are completely

separable.

18



g,(&) =N (&§)/N_ (0) (E)/u_ (0)=exp(-EZ/2) ,

poo poo

and

£,(8) = exn(-&2/2) ,

(50”)

(517)

we obtaln, setting A =1 and rewriting @“‘)(x,z) and ¢( ) (x,2)

as 95 (E C) and ¢(l)(£), respectively,

QC @(l) (&,2) A(l)(@(l) g’c)______.A%i)(¢(:ézl &)
2 (1), £(1)
+fo(C)Anﬂp( @0“ ,E)
with
52

(1) c? W 2 2
Ny, Boy &) €, F A e [ =>5) (2624,’ +1)

w 2 2
2 a? (1)
+ (32 -1] (5 -—=v) 6, (&),

hs %" (1)
(1
¢n_ﬂp, ¢ OIJ‘;&):I ), ¢0H(€)

A@38) - €y 1 [a

28 28
and (1)
2 1
T TN LAt ()
nly w/wcl)z—l d 2&

.2 2
~fu- (== 120 | | § 7L,
Yo h2 K

where ééi)(ﬁ) satisfies

(1) (1) 22 2
oC5 @Ou (5)5(2-?- —+_u) @Op =0 .

~19 —

(55)

(56)

(57)

(58)

(59)



And we have introduced

w2 W g 2 w_, 2¢° R 2.2 2
a%k2(z)=p (8)= [(;97) -1]—1(—— [1-(52&) 37 %2- .,<z:)}>>d—2- :
i

2'p.
ci Cs i o h

(60)

n2k2(2)=v (8) = -£51(5) (a2/ag?)t  (8)=1-C2K n?/a?, (61)

2(N_[r2 2\ /2 e 2y 2 2
where, in the explicit form, kx(z)-E@O wci)/Cs][l Cskz(z)/wOJ
with kz(z)=-fgﬂRz)(dz/dzz)fo(z). We have also used the relation

R/ Ing,@] = 1-v(e) = €2, (62)

and then note that 0 < v(§) S 1 in the
region |E] £ 1 (Iz]£h). The first task, being now to solve
eqs. (55) to (59), can be accomplished by employing the method

of Green's function so as to satisfy the boundary condition

(1)

@p(:t §,8) =+ @o with §=L/d for a certain value of T = z/h.9)

After souie calculations, we arrive at the self-consistent solution

for @ﬁl)((f G )

(1) Fo(1,8)
b, (0= @ét)(E)+950Fe(u,ﬂ)Fo(u,Jl){Iu(&:,f,’)— %[%WT

F(1,8)
—F_T_To pyﬂ Ip_('_Q’C) ’ (63)

accompanied with

(1)
¢Op (a) =¢OFO(H’&)/FO(L1"0)’ (64)

where
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IF (1,8)Fo (1)) Folu,MFo(u,&)] -
AN NN 0 (1) £(1)
Iu(e’m—é{Fe(u,a)Fo(u,ﬂ) ) Fe(u ﬂ)Fo(u.D] A (gﬁ (7),7,6)/8,

(65)

together with
Fo(n,&)=F(-u/2,1/2; £2/2)=F (u,-£&),  (66)
Fo(1,6)=EF(1/2-1/2,3/2;8/2)=-F (1,-E). (67)

Here, the confluent hypergeometric function F(a,¥;x) is as usual

defined by
®  a(a+l)...(x+n-1) xB « x ola+l) x2
F(“’Y’X)zr% (14 1) ... (T ol “ 1 Y 7Yy 57 *

(68)

And we see that the condition (54) is satisfied since

[2/22)10[ §{L)|] - '(%/Zz)(?u/%)(?u/?v)(Z/?u)lnlgﬁ(l)]I
2161/ [ 1-(wy;/w)? ] (@%/6%) | (2/20) 10| §S 1|« & | (2/2a) 1n
[F(a,3/2;52/2)/F(a,3/2;f2/2)Hs O(K,) with a=1/2-p/2, provided
that 1/2 <wci/wo<l and |E|S£0<0(1), but that, in the a-& space,
all points on and near the locus & =&(«) satisfying F(a,3/2,§2/2)=0
be excluded. If we wish to include such points, we may only write
| (9/9z)@(()l)(x,z)/@c()l)(L,O)‘(( [(d/dz)fo(z)l instead of the
condition (54). 1In any case, because of the sufficient smallness
ofyu/9v, our assumption is justified; the z-dependence of
@él)(x,z)(and also of _QS(l)(x,z)) is much weaker than that of
fO(z). Let us now introduce the following convenient functions;
setting §!=€hﬂ=1 in eqgs. (56) and (57), neglecting terms of order

(pi/d)2 compared to unity and writing ﬁj(u,E)sz(p,E)/Fj(u,ﬂ)(j:e,o),
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2 2 2 ng )
_ u}ci wo 1 Cse anF . ( _?__ _ —(l ):)F ( )y
gy E)= )[(u, -) JC §7 ) - &) |F, (u,h

u’poi ¢t s VO
(69)

with such properties as o

juel&) =0y,(-8) and oy (&)= -0y, (-E),
and putting r =(C§/u§)(pi/d)2as(l+ZYeTe/YiTi)(pi/d)2,

2
(B & /2)2 5 _P_ F (u,0) F (u,0)
onﬂuj(g) = e¢0 2r gﬂd?e 2 FJ(P-v'?) 2—95""1_?— 32' [a % - 7:}
w 2 .0 2
—[E»—(l-(w"—i )%(2C2-l):‘}[fo(u,’}ﬂ } (70)
(o]

with onﬂue(é) = onﬂue(-ﬁ) and onﬂuo(a) = —onlpo(—&)‘ Here,
eq. (60) is rewritten as, eliminating v(Z) with the use of eq. (61),

p(@) = [(wy/w )2-1]r ™ [1-(w 4/u,)2r(a?/0) (1-8) ] (T2)
And then the expression (63) can be put into the form
qsﬁ”m.z;)/gsfﬁc,(u,e>+Fe(u,1)Fc,(u.ﬂ){Esgpe(5)-owe(ﬂ>+oﬂpou>ﬁo(u,f:)

—o“o(ﬁ)ﬁe(u,&)}ﬂ‘e(u.!?)FO(u,ﬂ)fi(é){[:onfpe(é)—on“e(Jl)

+0, 000 (0) ] Fo(18)

—onguo(E) Fe(u,ﬁ)}EFo(u,ci)w*Fe(u.ﬁ)Fo(u,ﬁ){[(oﬂ“e(é) 00 (0)
L)

+22(8) (0,916 (8) ~0pn g6 +0, 0,0 () ]Fo (. 8)=[0 g, (&)

+22(8)0,9.,0(6) ] Fo(wiB)} (72)

where we note fZ(C) =exp(- C?) and that, as easily predicted,

{ﬁ(l) é ) is anti-symmetrical with respect to =x/d and symmetrical
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with respect to € =z/h, i.e., ¢él)(§,5) ='—¢L(ll)(—cf,5) =
@ﬁl)(é,-(‘;), so that @L(ll)(éf,lf,) vanishes at &£ =0 for all values
of £. And we confirm that gﬁ(i)(tf,;): QSé?(iﬂ): QSO’F'O(p,iﬂ)=
i'¢o, being independent of & and u(Z).

By the way, we should notice the fact that the expressions
for @((Mll)(&) or @él)(x,z), consequently for @ﬁl)(f,l:) or
gﬁ(l)(x,z), have been derived without any restriction on u except
that 4 is a positive real number, including positive integers.
In other words, the fundamental mode of the externally excited
electrostatic ion cyclotron wave is considered to be an eigen-
mode in which p is a continuous eigenvalue of the wavenumber
since p can be varied continuously by controlling the external
and plasma parameters as seen in eq. (71). The potential for
the fundamental component of the wave, ¢(l)(x,z), in the case
u=n (at least p=n where n is a positive integer) may, however,
be expected to produce a corresponding electric field
E(l)(x.z) = -(2/72r) ¢‘1)(x,z) more effectively than the poten-
tial in the case u%n (p>0). Namely, the condition p=n can be
the optimum one to produce the strongest electric field as may
be understood by numerical studies of eq. (72) for various values
of u. Therefore, we here try to reduce egs. (69), (70) and (72)
to suitable expressions for the case u=n by employing such

formulas ns, excluding n=0 since u > O,

n/2
_ (-1) -« (n-1)(n-3)+++3.1.F (n,&) for n=2,4,6,¢..
H (§)= (n-1)/2 e , (73)
(-1) -n(n-2)..-%:1-F _(n,5) for n=1,3,5,+++

and



n/2 n/2

(-1) -2 -(n/2)!-Fo(n,&) for n=2,4,6,+--
h, (&)= (74)
n (n+1)/2 (n-1)/2 '

(-l) o2 ’((n"l)/Z)l‘Fe(n’&) for n=1,3,5,°°" ’

where Hn(E) is the Hermite polynomials, hn(E) the Hermite func-
tion of the second kind, and

2 3 2
58 =&8 G, 35 §) = (apexd) (75)
0

Note here that, if the boundary condition were such that
gpgi)(too):o, hn(g) could not be one of a pair of linearly inde-
pendent solutions of eq. (59) with u=n. Noting relations such

as ?e(n,ﬁ)=aneﬁn(€)+anohn(§), F (n,&)—a Hn(5)+anoﬁn(€) and
Fe(n,0)F (n,0)=h (1)E ({)/n!=Ap with definitions a __=[1+(-1)"]/2,
ano=[1-(—l)n]/2, ﬁh(5)=Hn(€)/Hn(l) and En(€)=hn(f)/hn(ﬂ), we can

then find eqs. (69), (70) and (72) in the form

0y (&) = 2,00,0(E) + 20822 ®) (76)
onﬂnj(g) = %ne nﬁi%(g) + anoonﬁﬁg@i) ’ (77)

and

P &)=, 6 E0) v a B8,

(le)
( ) T 4,6,4..
i.e., ¢3 l)(é C)= P et °r e (78)
¢ 10)(5 C) for n=1,3,5,...) ,

with



16,00/ By &) a,{[02(8) ©)-0§2) (140§ ()] &_(&)
-oiea &) F,(6)} .25 @) { [0,9{) ©)-0{g)o ()+al$) (D] E (&)

_onizxo(&) H (E')} (79)

~and
1 -
QS,(I o)(E,C,’)/ ¢O=Hn(§)+An{[o(°)(§) 0(0)(1),'0}0)(.0)] (&)
“oha® 7y} +ae2@{[ol5). €)-0(3) (Dr+0lg) (W F, &)

0{90o(&) B &)}, (80)

~%nino

where

J(e) &(= '(o)
&) H (7)) _ ) 2 (&) h (

9

(:‘: =B, dr;{_” }ﬂnhn('f}’ }- ,(*{ M aE, 0, (81)
%no5) O {h () e ° & (7))

with By =[w§i/wgoi(0)][(wo wp) 2] (02 /02)(note c2/c2 =147, 7,/2Y 1),
°aL=22/272_SM and suz(dz/h2?(l—C2 Es(wo/wci)2[r— —u((wo/wci)z—l)—%],
and

or(ljzle(&) § -'2 H,(7) 2h (7] 7

%nino

5(0)
nﬂne(&) 2 n (O) 3H (?) 2 [bﬁh(7?}2 [ H °
(o) (&) 27 27 - [ n 7)] ’

%nino
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with Bnﬂ:(Be Q50/2)2r [(wo/wci)2-—l ]—l, n’ =p’ (n) and p’/(p)=

p [1-(wyy /) ® J(@%/n%) (267 -1)

- 2 -1 2 (2.2 e
= -u+ [(wo/wci) —l]r [2—(wci/wo) r(d“/h )J. In eliminating

C‘? from the expressions forc,@u and p’(n), we have used
2 1 (1242 2.1 2 -1y (1252
€2=1-(n?/a2) (wy/w ;)2 [rh-lluyfu)2-1) ] =1-(02/aP)s |, (83)

which is obtained by solving eq. (71) for C’,g. And note that
“kz(z) is real’z22 %< 12 ureu(uzveTe/yiTi)(pi/d)2; (wo/wci)z—l.
Further, we should notice here that, since d2/h2<< 1, Z:2 is
very sensitive even to a slight change of u so that, within the
region || £ 1 (i.e.,|zlSh), u may approximately be treated as
a constant. Namely, even if p is fixed, the potential excited
on such a pair of planes that (;’2 is constant may approximately
be regarded as the same potential as excited on any other planes
(perpendicular to the z-axis) in the region |€| < 1.

Among such various modes that p=n=1,2,3,:-+, the potential
¢(l)(x,z) for n=1, being rewritten as @L(Ll)(cf,C)fo(Z;) in the
E-C space, can favorably be expected to be excited most effec-
tively under an ideal situation. And so the resultant electric
field can then be dominant. Further, in case of sufficiently
small values of both B, and B y» we have ¢(Jl‘)(£,C)= ﬁ(im)(cf,é)
== ﬁl(E)=§/ﬂ§x/L, sc that the x-component of the corresponding
electric field becomes such a dipole field as
—d_l(a/?cf) ‘@(i)(f,(:)fo(f,) cosw,t z—(ﬁo/b)[exp(—zz/th)] cosw,t.
Hence, the x-component of the dominant electric field due to
Qél)(ﬁ,(‘;) with p=1 or p =1 can approximately be regarded as

a dipole field so long as Bﬂ<< 1 and Bnﬂ<< 1. We should, however,



note that such a dipole-like field is not realized, of course,
unless [(wo/wci)z-l:]r_l is nearly equal to unity so that
p=l or pu = 1 where r=(1+Z)‘eTe/7iTi)(pi/d)2 and p is given by
eq. (71), and also that any other mode can be dominantly excited
according to an experimentally controlled value of u though
we have above supposed such an ideal situation that p=1. -

The second task is to solve the set of equations (27) to
(29) consistently with the boundary condition that ¢(2)(*L,z)=0
(see eq. (30)), making use of the solutions of egs. (24) to (26).
To do this, we first solve eq. (27) for 6v§2), finding the ex-

pressions
(2) 182, [ 22 wio
svge’ = -m[uoﬁ(ﬁowo)—(h m)fOXJ , (84)
svi2) = - @%ﬁg—[uﬁﬁ(%%)‘(l* —'%9 )fcx] : (85)
and C
svi2) = - ;—-25—259 ug%(ﬁowo)—foz] ’ (86)
o
where () =2w_,
B¥o(xrz) = By $P)e 602V n_—(6n{VI/n )2/4 (87)
£ (x,2) = - (1/2)svi1) . (2/or)evD), (88)

and we have used the relation foy=(wco/iw f . For the electron

o) Ox
fluid, in a similar manner as done in obtaining 8vél), noting that

£ = 0, foy= 0 and f_ = —(3/@z)(6véi))2/4 with eq. (36), we find
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(2) (2) ~
évex = 0, Gvey = 0,

(89)

and
2 2 ‘
(2) _ _ % 2
bvgy = - 'ﬁi‘a—z{:ﬁe\l’e(z) - § Sb(z)) J (90)

where we have required the relation ¥_(x,z)=V_(z) so as to be
consistent with eq. (89), i.e.,zwe/ax=0. Further, employing
egs. (35) to (38) in eqs. (28) and (87) with o=e, we obtain

(2) 2 42
U 1 2 Ue I\Te
?T Ne Z_Z{ edz(B Pe)- _5 —4'[ (a_ﬁesb) +
Y
2 d (2) (1)42
+N—2—— ¢)J}~e¢ + (8, ¢ /4, (91)

where Bewe(z) has been discarded compared with
~(u2/Q2)N_1(9/22)N (4/d2)B ¥ (2z) ~ - (K u_/Q )2 since

-Qo’ 2wo< Kzue . Note here that ¢(z) can be expressed in terms
of ¢(l) through eq. (38). And so W_(z) can be expressed in
terms of ¢(l) and ¢(2) through eq. (91). PFurthermore, using
eqs. (39) and (91) in eq. (29), we immediately find

(2) 2 (2)
5n 2 dn
i 2 2 2), 1 1).¢ _
Ny - (l—}‘DeﬂQ )Be¢( )+ Z(Be¢( )) - N: ' (92)

. _ : 2 (2252 (2)
which is equlvalen? ;to eiéni+ee¢5ne~ 0, since hDe(a /2 )Be¢ |
—~ 2 2 2 2 2 2

(Kx e pi)’Be¢ | < O[(wci/wpi)(ﬁeéo) J . And then we
obtain the second harmonic components of the ion fluid velocity

as, approximating as Bi\vi(x,z):.:-.(lﬂ'i'l‘i/Z)’eTe)Bi ¢(2),
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sv{2)- - —5-2—;{2—&— [(1+ 'z_:—;_ :i L)-(h ;iao) ix] : (93)

svi2)= - R 2 [(u Z::i?,ﬁ—i %—‘é;((—z-)-<1+ % )fixJ o (94)
and

v (2)- [(1 Z:iil Zl {2)- fiZ], (95)

where fix(x,z) and fiz(x,z) take the approximate form

R,2/2x (1) 2 j41) 2
fix} = —3—2-<1+ { }[ 2,28 >J » (96)
£, 4w 2/0z 2z

. 2 2_.2 2n _ =
with Ri-wo/(wo wci). And note such relations as uiBi—ei/mi—lBe'C

2
se

and (l+YiTi/ZYeTe)ei/mi=]Be[Cg. Here we point out that the
neglect of A(g) in eq. (27) can also be justified since
A(2)~ piLof1 ~ O in similar manners as done for Aél) below
eqs. (37) and (42). With the help of egs. (40) to (42) and (91)
to (95), the equation of continuity (28) for the ion thus leads

to a2 wave equation governing ¢(2)(x,z). That is,

(2) (2) (T2 1 dN_; (x)7 5
cc ¢ (x.z):{[—a-;+NOi(x) = JZT

2—w2. 02
. 9002c1(1+522 }¢(2) _A2)(¢él),x,z), (97)
S :

with
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B 02 2. 2
A(z)(gS(()l),x,z):' e"2s{l . Yo, w02 [1+

2 _ 2x
4u'o wo 0 u’o u)ci
1 dNoi(X):} 2
+ —_—
Noi(x) dx 2x

7 7
Gy @ NG Y
——— A -== =55 * ’ (98)
cs -Qo 2z we-w; \ 2% 2z

where we have approximated as Ni(x,z)zNoi(x), and retained only
the lowest order terms with respect to wfi/wsoi(o) < 1 so that
¢(l)(x,z)z¢él)(x,z) in the inhomogeneous term A(Z) of eq. (97).

Now we assume such a form as

#?) (x,2)= §?) (x,2)1,(2) , (99)

substitute eqs. (99) and (53) into the wave equation (97) with
eq. (98), and rewrite this equation in the &-T space as, using

egs. (50’) and (51’) and rewriting @‘2)(1{,2) as @iﬁ)(é,ﬁ),

(2) 62 eoye (@ _g2 () (£.y- A(2) ( FD)
Le b &= Cm-Er N g "GR8, 5,8), (100)

with
@) 51 e mrtp e @20 ) 0gi.) (95(1))2 (101)
&6 = ——E=- 25 )43 , (101
A)\u o 6 ’Be’ o 2&'2 2E I 2E A ou
where
A(E)= [(2u)o/wci)2—l]r—15_-(wci/2w0)2r(d2/h2)(l—Cz)] >0, (102)

or
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g 2=1-(82/a%) (20 fu)° [r Al (20 fu_)2-1) 1] (102")

and

P=(uyy /20,)2 [14(uyy /w )22 [ (w y/0)? T2 > o, (103)

ol BT T s e ]

woy P weg 2 2w 2 ~1 2 42
26[1+ %(w—cl) J [1-(5,—2—1) ]7\[1— -gi\r((w—c-?)-l) - %(::Tii.) r%:} >0,

(o} h
(104)
and also
w., 2].2 w , 2] 2w 2 2
= _ci d- .2 _ci - o d
5,= [l'(wz )Jhg g —@-(wz )J{%Z) [x(( o) ) - J h2}>o
(105)

: (2.2 2 (1)
Further, r is defined by r—-(Cs/ui)(pi/d) as before, and ¢ou (&)
is given by eq. (64). Note that eq. (102) takes such an explicit
2 T A2_.2 \ /2 2,2 2 . _
form as A(z)/d —I}szO—wci)/CSJ[l-CSkz(z)/fzOJ with 520~2w0.
The second task can be accomplished by solving eq. (100) with the
boundary condition @f\?(tﬂ,c):o on the basis of the method of

Green's function.” After similar calculations as done in finding

Qj(l)(cf,l:), we obtain

(2)(5 C)=1p ]¢ Fo(0Q0)F (2, ﬂ){I (&,2)

(/2 [F (0,8)-F (AE)]T, (-0,0)} , (106)
together with
g 2
I,,(5,0)= g ;7[1“ WEF A -FamEME)E QA(‘2 )18/ B §2),

(107)
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where ?j(A,E)sz()\,&)/F].()\,_Q)(j:e,o), and F].(A,E,) are defined by
eqs. (66) and (67). Let us now introduce two even and odd

functions of & as

2
OS] §7e’g {?O(A"))} U, ()= “aie {76 (108)
Iruol&) o Fo(r:D) " o' 7E)

respectively, and define the even function U)\u(’}) by

_ 2
Z 2F (u,7) _ 2
Uw('7)=P(5%§— %- QA)[(—%,;—'?—) ‘ SA(FO(u.7))J. (109)

And then the solution (106) can be put into the form

(2)
Orp (B,8)/ @, =18 JBoF (AP (A1) 2, (E){0),0 (E)F, (1,8)

_E;we(ﬁ)—owe(ﬂ)+ow°(ﬂ)]Fe(x,&)} ) (110)
Here we see that @iﬁ)(ﬁ.C) is symmetrical with respect to both

& and g, i.e., @iﬁ)(c’;‘,ﬁh @ii)(—5,5)= ii)(f,—C) (note A(g)=
=A(-C) as well as p(G)=p(-C)), and confirm that ﬁ(ia(tﬂ,c’,)zo.
By the way, A of the second harmonic mode @(i&(ﬁ,lf,), as
well as p of the fundamental mode @(i) (§,8), is regarded as a con-
tinuous eigenvalue of the wavenumber since A, being a positive
real number, can also be varied continucusly controlling the
external and plasma parameters as seen in eq. (102). Roughly
speaking, since d2/h2<< 1, }\/uz[(2wo/wci)2—]_]/[(wo/u)ci)2—l]>1
for the case l<mo/wci< 2. If we consider a case wo/wci::,[é'
for exaniple, AMu =7 and then A takes a positive integer when u
is a positive integer. Or, in general, even in such cases as
wo/wci#,/—z—, A can be positive integers for appropriate values of

u. Hence, for the purpose of practical use, we rewrite eqgs. (108)



and (110) for the case A=m (m is a positive integer). The

results are written as, employing eqs. (73) and (74),

B52)(5.2)/ By=18,] By by o @) {0,0E) By E) =0, (E)E,(E)

~[opue () -0, (D] 2peln(E)*ay, m(a)]} (111)

with

S L _
az(%) = dr;e'2 TP l)momuf( &) ,  (112)
Omus (5) o (EaM) (-1)%0,, o (-&)
where age= [1+(-1)")/2, a, =[1-(-1)"]/2, B (§)=H_(§)/H_(1) and

Hm(E)zhm(E)/hm(ﬂ). In addition, let us suppose p to be a positive

integer n, too. And the even function (109) is then rewritten as

(7) ano mnf ?) aneUmns(O) ' (113)

together with

e ) 2 [@E, () /an)%+s (H_(1))?]
=P(——§'-755'—Q ) _ _ - (114)
u_ ) 7 [@n, ) /am2ses (B (1))7]

We have thus calculated the expressions for both fundamental
and second harmonic components of the externally excited, non-
linear electrostatic ion cyclotron wave potential in the station-
ary state. We then find that an appropriate electrostatic ion
cyclotron wave is dominantly formed according to experimentally
controlled values of p and A depending strongly on wo/w . ond

ci
r=(1+ZYeTe/YiTi)(pi/d)2 but weakly on d?/h2 and €-z/h. Further,
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uw and A are considered to be continuous eigenvalues for funda-
mental and second harmonic components, respectively. However,
when p and A are divided into distinet sections uj< p<:yj+1and
M SASA (i, k=0,1,2,+-+, and u,> 0 and A > 0) so that, in
each section, the number of roots of ¢(i)(§,l_‘;)=0 or QSiﬁ)(f,é,’)
=0 for& in the region [§|< ] (x| £ L) is unchanged, the
wavenumber also remains unchanged in each section and so u and
A play effectively similar roles as the discrete eigenvalue of
wavenumber, provided that [(=L/d) be fixed at a certain value
fairly greater than unity. Here note that the number of such
roots depends on the half width § because [ changes the signs

of normalization factors such as Fe(H,ﬂ) andl’o(P,ﬂ), especially
the sign of FO(P,JI) as will be understood since @(i)(éj,lg)/_@oxfo(#,ﬁ)
EFO(P,é)/FO(P,ﬂ). Furthermore, it is shown in this section

that the x-component of the fundamental electric field of the
wave can be a dipole-like field so long as the parameter
[(wo/wci)2—1:]r_l is exactly or nearly equal to unity (note that
the present theory is limited to the case (pi/d)2<< 1).

In the last place of this section, we should point out an
interesting result that the condition de KZue leads to the
usual Boltzmann relation for the electron fluid even in inhomo-
geneous plasmas. Namely, making use of egs. (23), (38) and (91),
and noting such a relation as Bg ¢2(X,z,t)/?

~[(p, 1) /2)2exn(izu t)+(p g 1) /2)2exn(-120 )] /o402 |#1)] 74,

we can derive

5ne(x,z,t) N

N (x,z) T B P(x,2,t) + %—LZ 67 (x,z,t) - %—[ag]gb(l)(x,z)]?

= exp[—Beg{)(x,z, t)]- <exn[¥,{%e¢(x.z , t>]>t , (115)
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which is accurate at least up to the second order with respect

to Be¢(l)(x,z). Moreover, we wish to pay attention to other
interesting features which, as well as —<éxp(-ﬁe¢)>t in eq. (115),
have their origins in the consideration of (ug/2)(?/alﬁ<(6no/No)g>t
in the pressure gradient term of eq. (8). Namely, we first

obtain from egs. (125) and (126)

¢§l)

C2

2¢(1)

n
|

c’ , (116)

¢

with ¢’ being constant in space and time. This is different from
the result 6N/Nooc-l2¢(l)/ax]2+Const. which has previously been
obtained, by computing only the ponderomotive forces and dropping
]2525(1)/92}2 for simplicity, for other waves such as lower-—hybrid,m)
upper-hybrid“gnd Langmuir wavegzin a point that 6Ni/Noi contains
an additional, unnegligible term proportional to l¢“l),2. This
point is a new feature found in this paper at least for the non-
linear electrostatic ion cyclotron wave. Next, we can accordingly
expect this new term to bring about a corresponding term in the
differential equation governing the nonlinear wave. Namely,

taking the high-density limit w /wp01(0) O and neglecting
(9/2z)w%i(x,z) in eq. (43), we obtain

2 .2 2 2
[9 1 dN i] a . wo-—wci(l N _C_S _2_— ¢(l)
ox oi 0x Cg wg 222

2 2
E@. @Q(l) ce 3¢(1 12+ c
4 Jd x ax u)? 2 ox

=0. (117)

24 l), ! ¢(1)I

w2
¢

This has in this section been solved analytically under a prac-
tical situation by treating the nonlinear terms as perturbations,

but will be considered differently in a separate paper.
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§4. The Density Profiles RF-Plugged by the Nonlinear Static

Forces

In this section, we first calculate the nonlinear static
forces E’ and -(e /m )(z/ar)¢ in order to express ¢po(x,z)
and ¢ (x,z) in terms of the fundamental mode potential ¢( )(x,z)
Starting from the definition (7), we find that F poy=0;

(R %) 1 of
g o— cc
and
s 2¢po 1 wcza'“’io ? (1)12 0 (l)
Ppor =T Ry gs T4 w2 ds| x|t gz I%vesl [ (19
o o ¢

where we have used such relations that évg;)=(wco/iwo)6véi) and
(9/22)6v 1) =[w2/ (2
(31) and (32). And we immediately find from egs. (118) and (119)

Wy - io)](D/Zx)évéi), being obtained from egs.

that
2,02 2
Ro—wo/(wo wco) , (120)

and that @ =(m /e )(1/aR, )[lav(l)12 + R lsv(l)12]+ Const. With
the help of egs. (35), (36), (41) and (42), the latter equation

now takes the following expressions:

¢pe=(me/ee)(ui/4wg)I(d/dz)Be¢(z)lz+Const., (121)
and
(1)2 (1),2
_ & FUTCR  R T R .
¢pi— E;(l + m) 4w2 @x az + Const., (lcc)

where we have neglected terms of the order AzDi’(32¢(l)/MT2)/¢‘1”

~ KoAD, =KTuS/ul < KIC 2/02; S uf /ul, € 1. Note here that ¢1

is connected with l)(x,z) through eq. (38), and that
! pe
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negligibly small as compared with ¢pi since ,¢pe/¢pi'

(22 2 . . ,
O(wo/KZue) under the assumption w,& K u . Further, with

the use of eqs. (38) and (40), the definition (14) can approxi-

mately be reduced to

~(e /n_)2@ o/ar ~(B2/4)a2(2/00) | ) ° (123)
which yields

¢SO': —(Bg/4ﬁo)l¢(l),2 + Const. | (124)

Next, we wish to express in terms of ¢(l)(x,z) the density
profiles rf-plugged by these nonlinear static forces. For this
purpose, let us substitute eq. (18) into the requirement
Ni/NoizNe/Noe derived from eqs. (19) and (39) and employ egs.
(122) and (124). And then, we obtain the field-dependent density

profiles
N, (x,z) N (x,z) Blﬁ
i e
= = (
Noi(") Noe(x) ¢pi ¢pe ¢si ¢se

=exp{—we:[¢nf<¢<l>.x,z>+cJ}z1-:ee;[¢ng<¢<l>,x,sz.
(125)

accompanied with

b0 - (O T o)

where ¢pe has been discarded as a result, and the integration

constant C is to be determined by a kind of boundary condition,
for example, by such a condition that the particle number is

conserved within the entire volume V under consideration, i.e.,
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{V dT&Ni(x,z)sg;d‘r[Ni(x,z)—Noi(x)] =0 (dt=dxdydz).

(127)
Let us hereafter try to consider this example in some detail

Substituting eq. (125) into the condition (127) yields

Ny (x,2) oy (0) = 1-18J[ By (B me2) (P g (1) m02)) ]

(128)
where the space average notation is defined by (F x,z))

‘(‘d‘:F(x,z)N (x)/{\dtN i(x) Now, approximating as ¢( )(x,z)

~¢(l)(x,z)-¢(l)(x,z)f (z) rewritten as gs(l) 5)f (&) in the

E—C space, and assuming a realistic situation in whieh N

(%)
and fo(z) take

oi
the Gaussian forms (50) and (51), we can, in

the §-7 space, put egs. (125) and (126) into the form

N,/N_,=1- |B lfz(C){:gb é) ( iy i;)u&»s]

where f (C) ¢nﬂu QS(Lll)’&) and @(l)

on (5) are defined by egs. (517),
(58) and (64), respectively.
which p=1

(129)

If we consider a special case in

and so 9.5(1)(&): ¢oﬁl(€’)= @OE/Q, we can further

reduce (129) to

N /Noiz 1-B ) [ag—(cf/ﬂ)2]exp(~C2)=l—Bnﬂ ai-(x/L)zJexp( 2°/n°),
(130)

00 2n -1
2_/./& 5 _ (L/a)
£o(d), - (e /( “Z—“HJ from

. 2 . (1
where we have taken the limit d /h - 0 in n.Ql @ E)

_Q (B @ /2)? [(w /u)Cl)2 l] -1 with r~(w /w )
=(2n+l)(2n-1)...5.3.1

And
1, and (2n+1)Jf

(130) that 8Nj
in the core region where Ix/LI<« .
situations, however, if we apply our theory to such

We then see from eq.

Ni_Noi < 0

In practical
4 Joeal volume
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that Ixl1 £ L and 12z1£ H, and note that, for an arbitrary value of

- 2 -1 . . 2
u(~[(wo/wci) -1]r~"> 0), |6Ni/Noi] is proportional to fo(z)
= exp(-—zz/hz), taking the maximum at z=0, it is not necessary
to require the total particle number conservation (127). Because
some of the Plasma particles which are contained in the local

. 2 2

volume before applying ¢ext(z,t) =t ¢ocos wot-exp(-z /2h€) at
x= tL are expected to be removed along IBO into such ambient
regions that |x|£ L and |zl>H after the excitation of the

electrostatic ion cyclotron wave by ¢ (z,t). For example, if

ext
C 20, we have N;/N ;= 1 - B, [ (a’/1)2~(x/L)2Jexp(-2%/n°) with

d’=4d"(d,C)xd for the special case u=l(rz(wo/wciy)2—l).
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§5. Summary and Conclusions

We will here review some interesting results obtained
in this paper. First, we have derived the functional form of
the nonlinear electrostatic ion cyclotron wave potential
¢ (x,z,t) excited by the externally controllable exciter
¢ext(z,t) _¢ cosw, t- <exp( 2/2h at x = L. The result is

written as

@ (x,z,t)=exp( 2/2h2)|:g5(1)(x/d z/h)cosw_t
+¢£ﬁ)(x/d,z/h)0082wot + ] , (132)

where géfll)(f,,lf,) and ¢§§)(§,C) are respectively given by
eqs. (72) and (110) for the case in which p and A are continuous
eigenvalues, and reduced to egs. (78) and (111) for the special
case in which u and A are posive integers.

In the core region where |E| < | (or |x] <€ L), egs. (72)

and (110) are respectively approximated as, for the former case,

él)g,ng}oEo(p,a){ L4F g (1, )F () [0, (8)=0p o (1)

2
+ 1(6) (0 g0 (D=0, )]} (133)
and
B2 (&6 = - 1Bl BLEDF, (Do, (D=0, (]2 @IF, (A.S),

(1%4)

and eqs. (78) and (111)(with egs. (79) 2nd (80)) respectively

as, for the latter case (u=n, Ar=m),
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Bora @ 1, [ofe ) - o)) A

¢ @) (0,0, (1) = 0,§2)(0))]} for niza, ...,

(1)
P §60)= (135)
. BoE, & 1o, 0,02 - o)) ?

- @0, {200 - o U} or 515, )
and

gsrii)(&’a == ",Be’ @i Am[ f(‘a mns Jf (t‘)[ me m(E’) *amo m(a)]

(136)
with eqs. (112) to (114). Further, in a special case in which
I1/2-p/2| € 3/2 and 1E1= [x]/d < 1 (|&I€Q), so that
Fo(p,E)¢=<S (note eqs. (67) and (68)), the fundamental potential
of the externally excited nonlinear electrostatic ion cyclotron
wave approximately produces a dipole field perpendicular to the
contant magnetic field Bo

Next, starting from the basic equations founded in $§2, we
have shown that, under the assumption wo/Kzakﬁﬁl«:ue, the
Boltzmann relation for the electron fluid, eq. (115), can be
employed even in inhomogeneous plasmas as well as in homogeneous
ones, with an accuracy at least up to the second order with
respect to B ¢(l)(x,z). Therefore, we can make use of the
Boltzmann relation (115) instead of a set of equations of motion
and continuity for the electron fluid when analyzing an inhomo-
geneous plasma.

In the last place, we wish to point out that when expand-
ing eq. (116), the expression for the density depletion

2

SNiEIVi(x,z)—N . (x) contains a new term proportional Lo]¢\i)(x,z)l

0ol
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in addition to the usual terms proportional to - | 2¢5(l)(x,z)/2xl2
and —la¢(l)(x,z)/Dz 12. The contributicn from [¢(l)(x,z) ]?

has appeared because of the inclusion .of —(énO/NO)2/2 in expand-
ing 1nn0 in a power series of léno/Nola']Be¢ | as done below

eq. (6), with the simultaneous use of the relation
6ne(x,z)/Ne(x,z):= B, ¢(l)(x,z) based on the assumption wo/Kz<§ue.
And this contribution becomes relatively important in the edge
regions of the plasma slab. On the other hand, the contribution
from - |B¢(l)(x,z)/9x l2, as well as that from - | D¢(l)(x,z)/az | °,
has its origin obviously in the ponderomotive force, and dominates

over that from l¢(l)(x,z) 12 in the core region of the slab

( 1x1<€ L).
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Figure Caption

Fig., 1. The density profile go(x) is shown for the case
in which a pair of rf-potentials are absent. Here

go(x)=Noo(x)/Noo(O)=go(—x).
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