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Abstract

We present a solution describing space-time evolution of
a resonantly interacting system of a damped negative energy
wave and two undamped wave packets of positive energies. It
is shown that all three waves grow simultaneously when they
are approaching each other, while a certain threshold condi-

tion is required for instability when they are separating.



It is well-known that when a negative energy wave couples
resonantly with two lower-frequency waves, all three waves grow
simultaneously resulting in an explosion of their amplitudes in a
finite time scale [1]. In most previous works [2-5], evolution of
this explosive instability has been treated as a function of only
one independent variable, space or time. Space-time evolution was
first studied by Zakharov and Manakov [6] by the inverse scattering
method. This method has been extended in Refs.[7] and [8] to treat
a more concrete situation where a large-amplitude negative energy
wave interacts with two small-amplitude positive energy wave
packets. In this paper, we consider the situation where the
negative energy wave is damped in the absence of coupling, but is
nonlinearly created by two positive energy waves with localized
initial space distribution of intensities. We use a method
similar to that of Cohen [9], which treated a stable case, i.e.
an interaction of three positive energy waves. We show that the
interaction always results in growth of all three waves when they
are approaching each other, whereas when they are separating
instability requires a certain threshold condition which is
determined by the-damping of the negative energy mode and the
convection loss of the positive energy modes.

We 1limit our study to a one-dimensional gystem in a homo-
geneous medium and to the resonant explosive type of interaction
for which the wavenumber and frequency matching conditions,
ko=k1+k2'and wo=w;+w,, are satisfied, where the suffix o refers
to the negative energy mode. We then investigate the slow space-

-time evolution of the envelopes ai(i=0, 1, 2) having the group



velocities Vi' By taking into account the damping I' for the
negative energy mode alone and by making the transformation

t=x-Vot, we then have the following set of coupled equations,

-3—3- ag + T ag = Baia, (l)
2 a; + % 2 ay = Baa * (2)
3t 1 1 ac 1 1az2

2 a, + 6 2 a, = Baga i (3)
3t 2 2 BC 2 oal N

where Vi=Vi—Vo(i=1,2) and we have normalized the amplitudes
such that all equations have the same coupling constant g.
Without loss of generality, we can write the envelope of

the negative energy mode in the following form:
+ t
20(2,%) = A(Dexpl | A(z,tr)as' ] (4)
0

[8/(MTI)]asa, | (5)

where in (5) we used Eq.(l). Introducing the intensities
defined by Ii=|ai|2(i=0’l’2)’ we then have from (5)

Io = [|B|2/(A+T)2]11,1, | (6)

and by furthermore introducing the variables, g=¢-V,t and

n=¢-V2t, we obtain from (2) and (3),

31, 31,

an = ulI., 3E = -ul I, , (7)
where

uoo= 2|B|3/[(A+T)(V,-Va) ] . (8)

We solve Egs.(7) by noting that the solution can be generated

from a potential ¢ (£ ,n) as



I,(E,n) = 5% o(E,n), TI2(E,n) = - o(E,n) » (9)

Q)|
Sl

and by restricting ourselves to the case of small growth rate,
i.e. |A]<<T, which is always satisfied near threshold. In this
case, we can safely replace X in (8) by an average value A which
is independent of £ and n. The solution can then readlly be

obtained in the form [10]
1

®(g,n) = uw ~ log [£(&) + g(n)] (10)
T (E,n) = wt £1(8) / [£(E) + gn)] (11)
I.(E,n) = -u™ g'en) / [£(8) + ()] , (12)

where f and g are, respectively, functions of & and n alone and
can be determined from the initial conditions as follows.

Let the initial spatial distribution of Ii be Pi(x) (i=1,2).
Since t=0 corresponds to &=n, we have

I1,(€,8) = P, (&) (1=1,2) - (13)

Then noting the relation M[P1(&)-P2(&)]=(d/d&)loglf(E)+g(E) ],
which follows from (11) and (12), we obtain the following

expressions for f and g,

€
£(g) = u.fg P,(E")F(E")dE" + 1 + C (14)
0
£
g(g) = —u‘fg Po(E1)F(E)AE! - C (15)
0

where C is an arbitrary constant and

: |
P(e) = £(£)+e(8) = explu | (Pi(g)-Pp(g)dae'].  (16)
“ Eo
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Our final task is to determine the growth rate A(g&,n)
self-consistently. To this end, we assume that Pi(i=1,2) are

sufficiently small in the sense that the integrals of P, from &,

i

!. Then to lowest order,

to £ or n are small as compared to u
one can approximate f and g by 1+C and -C and f' and g' by uP,
and -pyP,, respectively. This approximation yields a solution
which describes free propagation of the two positive energy

wave packets,

L@ = pe), .%Cm = ) | (17)

where the superscript (0) depicts the lowest order approximation.
In the next order, we treat the integrals of Pi as perturbations

and obtain

g n
£(g) = 1+C+u\( P,(g')de', g(n) = —C—UIE P,(g")ag!’
0

Eo
:
£1(E) = uPI(a){leg [Py (£")=P,(£')1dE" )
0
n
g'(n) = —uPz(m{wjg [Py (E')-P,(E")I1dE"} |
0

from which we have

I,(E,n) = P1(£>{1+uf P, (E')dE" ) (18)
£
n

I,(E,n) = Pz(n){l+uIEP1(€')d£'} . (19)

Substituting (18) and (19) into (6) where again we replace (A+T)

by (X+I'). and comparing the result with (4), we obtain



i

2M(z,t) = {zp loglI(z,mT.(&,m) 1)

g=const.

W{V [P (E)4P2(E)] = V2[Py(n)+P2(n) T}

~

ViP'1(E)/P1(E) = VaP'2(n)/Pa(n) (20)

The first term in Eq.(20), i.e. the term proportional to the
coupling u, is the contribution to the growth of the negative
energy mode due to the three-mode coupling; note that since u is
proportional to (%1—%2)—1 , the coupling always contributes to
growth provided |%1-%2| is much greater than |§1P1|‘ The last
two terms in Eq.(20) describe the effect of convection of the two
positive energy modes relative to the negative energy mode. One
can alternatively regard the growth rate (20) as consisting of
the sum of the growth rate of mode i, which is u[QlPl(g)—QzPl(n)]
—%lP'l(g)/P1(E), and that of mode 2, which is u[%le(g)—§2P2(n)]
—QZP'z(n)/Pz(n). We note that ViPi' is negative or positive
depending on whether the mode i is approaching or departing the
point under consideration. This implies that 1if the negative
energy mode is also localized in its wave frame, 2ll three modes
have positive growth rate when they are approaching each other,
while when they are separating the growth of the negative energy
mode requires a threshold condition to be fulfillec. In particular,
the condition for initial growth at the origin, i.e., at £=n=0,
is given by

P,(0) + P,(0) > (r/2|6|2)(K1§1+K252> , (21)

where Ki=[P'i(x)/Pi(x)]X=O.



To illustrate the result, let us consider the case where

Pi(x) are given by

P1(x) = Jisech?®K(x+xg), Po(x) = Jrsech?K(x-xo), (22)

In this case, our perturbation analysis is valid when (J,+J,)|u/K|
<<l. The initial growth rate in this case is given be
A = _lﬁii [Jisech?K(x+xo) + Jasech?K(x-xg) ]
T+A

+ 2K[V,thK(x+x¢) + VpthK(x-%x¢)] . (23)
For %1, %2>o, the convection contribution is positive (of order
2K(§1+§2)) at x»» and negative at x+-«. The interaction term
gives a pcsitive contribution near x=ixy. The maximum growth rate

is obtained when Kxo is of order unity. The condition |[A|<<I 1is

satisfied as far as

This same condition guarantees the inequality |A|<<I' at all times
provided |(V1—V2)/Vi| is of order unity.

As a final remark, we note that although we have assumed
homegeneity of the medium, the present result can equally be
applied to an inhomogeneous medium if the group velocity Vo is
equal to zero. As is well-known [11], inhomogeneity yields a phase
factcer exp[—ifcndc’] or. the right-hand side of Iq. (1) and
exp[iICKdg'] on those of Egs.(2) and (3), where k(=ko(Z)-k1(Z)
-k,(z)) is the wavenumber mismatch due tc the inhomogeneity.

If Vy=C, however, these phase factors just cancel out in Egs.(6)

arid (7), sco trhat the above result is unchanged by the wavenumber



mismatch. Physically, this i1s due to the fact
energy mode has a frequency independent of the
hence for given frequencies, w;twz=wo, One can
value of ko, so that the wavenumber matching 1s

positions.

that the negative
wavenumber and
always adjust the

satisfied at all
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