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Synopsis

1 of collisional drift

The previous nonlinear analysis
waves in an inhomogeneous plasma is extended to include
inhomogeneities in electron and ion temperatures. A slab
plasma is adopted with the width g in the direction of the
density gradient. A systematic expansion in powers of e=|x|2 is
used where xis the degree of density (temperature) gradient in
equilibrium state. The two-fluid equations are used where the
thermal transport is considered besides the ion inertia and the
effects of finite gyroradius and viscosity. A set of the model
equations is proposed to describe the nonlinear evolution of a
collisional drift wave under the presence of the temperature
gradients. The nonlinear development of the drift wave is
studied near marginal stability on the basis of the model
equations. A new feature, hard excitation, has been found
which is due to the effect of the nonlinear frequency shift and

takes place easily when the ion temperature gradient is

present.



§1l. Introduction

In magnetically confined plasmas, nonlinear transport due
to unstable waves is of primary concern. Although extensive
studies have been made on this subject, we have only a few

._4)

theories1 in which attentions are paid to problems such as
phenomena near marginal stability and transition to higher
instabilities and consequent nonlinear transports. In order to
treat these phenomena, we must have enough knowledges for
nonlinear evolution of unstable modes which govern transport

2)

processes. For this aim, in the referencesl’ we have
presented a nonlinear theory of unstable collisional drift wave
and considered the consequent nonlinear transport. In these
works, however, only the density gradient was taken into
account. The thermal transport is generally larger and
evidently more important in the confinement study of high
temperature plasmas than the particle diffusion. 1In this paper
we extend the previous theory to include the electron and ion
temperature gradients and discuss the thermal transport
besides the particle diffusion.

In §2, the basic equations are presented. 1In §3,
nonlinear analysis is made by introducing an ordering scheme
appropriate to an inhomogeneous plasma. In §4, the model
equations in a simplified form are proposed for the nonlinear
evolution of the mode of interest and the saturation level is
determined. The transition of an unstable state to a state with

more unstable modes is studied. 1In §5, the concluding remarks

are presented.



§2. Basic Equations

We use the two-component fluid equations with the
transport coefficients in the large QjTj limit (j=e,i5 where Qj
is cyclotron frequency and T is collision time. The
equations are valid for disturbances with the frequency W<<Qs
and the wavelengths perpendicular A, and parallel ), to the
imposed magnetic field such that )\_L>>ai and A">>Amfp where a;
is the mean ion gyroradius and Amfp is the collision mean free

path. Further we assume the quasi-neutrality condition and

consider electrostatic perturbations. The basic equations are
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where ne,i’ Ve, i’ and Te,i are electron and ion densities,

fluid velocities and temperatures, respectively, and the source



termsr)ge,i are introduced to sustain the unperturbed steady
state, and the electron inertia is neglected. We have used the
Braginskii formulaes) for the frictional force ﬁ, the stress
ténan:ﬁi,the heat flux ¢, and the heat generation Q. Their

expressions are
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where b = B/|B|, and Voy and V., are the electron-ion and ion-
ion collision frequency. Here and hereafter we consider the
case when 2 = 1, then & = 3.16, B = 0.71 and Y = 3.9. The

perpendicular conductivity is given by g, = nez/m Y

. and
e el

ow = 1.960,.
From egs.(2.3),(2.4),(2.7),(2.8) and (2.9), we find v_ ,

>
and vi as

<4

el E (2.15)
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where ﬁﬁ is the E x B drift velocity, ﬁde i the electron (ion)
[4

diamagnetic velocity, ED the diffusion velocity due to

collisional friction, 4. the diffusion velocity due to thermal

T
friction, respectively, as in the following;
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Moreover, 3{1) in (2.16) is defined as
v =g ey, (2.22)

After some manipulations, we deduce the following

equations for n, = n, =n and Te,i
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In calculating egs.(2.25) and (2.26), the following

relations are used,
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where A, = VJ_-@)_L .
§3. Nonlinear Analysis
We adopt a slab model with the following profiles of
density and temperatures in the equilibrium state
N(x) = N, (14+kx) , (3.1)
T, (x) = Tg (14 _x) (3.2)
i
T, (x) = Ty (14 %), (3.3)

where K, Ke and Ki are supposed to be almost of the same order.
We assume that in equilibrium the magnetic field B = Blﬁl is
uniform and static, and the equilibrium current 3"0 is
sustained by the external electrostatic field E,,, that is,

Tuo = OuBug.

We assume a smallness parameter e=|k|%<<l and introduce
1)

.
’

the following ordering scheme

n/N - e$/Te~0(€), W/ ~ wX/Q, -~ O(Ekiag), kyZ ~ 0(eh,

* -1 ) * '
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2 2
v/ ~ 0(*), k%D Dey

Ccn

(3.4)

where n and J are the perturbed density, and electrostatic

potential, v and ky,-k,.=kz are their frequency and wave



numbers. Moreover, w¥ the electron diffusion coefficient

(.0*
n! 7 !
e,i

along the magnetic field Dc", the plasma diffusion coefficient
perpendicular to the magnetic field Dc; and the electron

parallel heat conductivity Xi" are defined as

*

Wh T -kyTeK/meQe / (3.5)
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- 2

Doy (Te+Ti)Vei/meQe ' (3.9)

e _

The density n and the temperatures Te ; are divided into

14

the unperturbed and the perturbed quantities as

n = N(x) (1+p) , (3.11)
Te = Te(x)(1+ce) ’ (3.12)
T, o= T, (x) (1425) . (3.13)

That is, we define the dimensionless perturbations

n __ei___ z;—__ii‘_g.__ g—__"i_:}_. (3.14)
T (x) ' "e T (%) ! i” T :

As in Ref.l, by separating the linear terms and the
nonlinear ones, egs.(2.23)-(2.26) can be expressed in a matrix

form as
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where L is the linear operator and S is the nonlinear terms,
The expressions of L and S are given in the Appendix. By the

orderings given in (3.4), we may expand

L=104 ey e2 (2, .,

1)

U=coDy g2y, ..,

’ (3.16)
s = 2502y e3503), .., ,
also,
R R A IO
33:533+€5‘3I+"' , (3.17)

where 3g is the group velocity to be determined in the course
of calculation. As w is thought to be the first order in ¢ as
shown in (3.4), the time derivative begins in the first order
in €.

We will proceed into the third order in €, while we keep
the quantities of the second order in b = k§ai72 (we have used
the iteration in the calculation of eq. (2.16)),. Therefore we
assume e>>b,

[1] 1st order calculation

From eq. (3.15), we get



L(0) (1) )
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where Xc" = 3.9 Ti/mivii.

From eq. (3.18), we £ind pV= ¢} ana M= V)= 0.
We may write

2ik,z

(
p(1)= w\1)= f = h(X,y1, t2) + Z[g(x'yl,tz)e +.C'.;C.]
k

¥ —1k"z]e—1wt1+1kyy0 +c.c.

kf,ky{[f+(x'yl't2)eik"z+ £ xiyy/8p)e
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where h and g denote the modifications of the background

density, and f+ and f_ denote the amplitudes of the drift wave.

This expression of p(l) and w(l) is based upon the consideration

that the modifications of the background density by the zero-

frequency harmonic is the primary methanism for saturation of

the instability.l) It should be noted that w is taken to be

real in the present representation.

[2] 2nd order calculation

We have

L(0)5(2) , (Mg _ g(2)

The components of this equation are

- 10 -
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From (3.20), (3.22) and (3.23), we get
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where

* . e
8,= wlw -w)/kiD, p o= L+(1+8)* Dou/Xgu v

"

[ * 2. € 2 e
<Sk = =(3/2) (1+8) wT /kuxc" ’ 5k= (1+B)knu0/knxc" ’
e
5 = (3/2)wr /K2
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The quantities Gk’ Gk' and Gk are the phase shifts between ol
and @, which are due to the density gradient, the electron
temperature gradient and the unperturbed fluid velocity,
respectively.
We use the expression of f given by eq.(3.19) for f in
eq. (3.21), then we obtain

. ~ . * 1. * ~
{(-iw) [1+(1+)) D] +1kyvn - Elkvaib

r
£
1 3°h dh . +
+ = (A+D)Q.alt (= - == Ay) (ik)}
4 171, ox 4 Yy £
1 3% |9 9 £
+ () iatl— | - _3 . .
4 ity 5% . Aﬂ(lky) . = 0. (3.27)
+

where A, =32/axz—k§ , and g* is the complex conjugate of g.
. This equation gives the dispersion relation for w(real) which
includes the nonlinear frequency shift. If one neglects the
nonlinear terms in (3.27), the lirpear dispersion relation will

be recovered as

_ * 1 *
w= (uw, - 7bwTi)/[l + (1+))b] , (3.28)

where b = k2a?/2.
yoi
In the above, we have assumed that f in eq.(3.19) contains

the terms up to the first harmonic. Strictly speaking, the

- 12 -~



right-hand side of €q.(3.21) generates the second harmonic with
respect to the frequency w. However, the second harmonic can
be neglected for the following reason. From the coupling
strength of the harmonic generation in Eq. (3.21), we see that
the generated second harmonic is smaller than the original
first harmonic by about one eighth. Furthermore, if we assume
f«sin(kxx)eikyyo which is one of our dominant solution as will
be shown below, the second harmonic is not generated by this
mode.

The particle and the heat flux are obtained from the

second order calculation. The particle fluxes along the

density for the electrons and the ions are

Pexs <n vx>e = <n vx>i = rix
2 e )
_ z 2cNgTe kK (1+6) +XC"/D""[(1+A)1:m"+ Thu 1
“ku,k EB - e 1571705 nt 3P0
y k"XG" 1

- 3B ap (£, |2+ £_| )+ (L+8)kaug ([ £, 12-]€_]2)] .
€ (3.29)

The heat fluxes are

Qexs <nTevx>e
2cN_ T k B(1+8)+xS /D _, . .
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ku, k.~ eB 2. € 1+ (1+0) b n" 2°%r,
Y k" XC ]

*
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2 1
Cn
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[3] 3rd order calculation
The third order equation of eq.(3.15) is

L0y, Mg, (2 5(3) ' (3.32)

which has four components. Their expressions are

_ 32, (3)_,(3),_ 3%.(3) 3, 32
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-la [(kbi) +A (k42K ) 1gpies %f L -D_, A+ 3 (14N v..b 1f
3t 10 ii

= (v + a2 b) [p (2

(2) d -
~¥ ]"{SE; [1+(1+))b]

3 E}p(Z)-[E%— b=(2x) "Ly 2

* (2)
T.ay0 1 n Byo

b]C
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2. (3) ,(3) 92 (3), a (2)
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(3) o(3) o(3) (3)
e ! Si ’ STe and STi

terms which are given in the Appendix.

where S are the third order nonlinear

In the calculations of the second and third order in €, we
have retained the quantities of the order of ¢2b? and
€’b?, while neglecting the quantities of the order of eb? and
e2b3.
As was argued in Ref.l , we plausibly require for the first

harmonic component of 0(2) the following relation

*

i{wl l+(l+A)B] -w; + %bwT_} 0(2)
i

= - PO+l I B, £T,) 8,0 P+ (Bx¥,022%,) 4, £]

which is reduced from the first harmonic part of eq.(3.34).
This relation exactly holds when we replace p(z) by the first
harmonic component of f, és seen in eq.(3.21)..

In order to obtain the evolution equations for h and g, we
average eq. (3.33) over tl, Yo and z, and over tl and Yor

respectively. Also we obtain two evolution equations for f+

and f_ from the first harmonic part of eq. (3.34). Thevresults
are
| " (8, +61)
3h 32h Wn'ox™Ox 3 2
= =D, Y= +yp[2—2 K 98 (1f 24 |Ff
Tty T Vex i K yx U E2* [£]5))
. *6" a -
nk
+ Z2 = % (]f+|2—|f_[2) ’ (3.37)
* (8.8, )
d3g  _ 229 Un'oxTOx!) 4 * _
3t2 = Dc13x2 + 2[2 e 5x (f+f-)] (3.38)

- 15 -



2
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(g =8 V35 VE,= [ (8,48, +48,) (1+ = =)~ 5 —wpq
2 1 i9x
* ] L
~ w,. (§,+8,.+6,)
+ 0+ igyl£ + 2K k k 3 rigw'E
(3.39)
2
a. 3
3 v 9 * 'os" 1 3h, 1 i * 3°n
—_ - 2 )f = [w_(§ +8 +6 1+ = =)~ = —w_ §, ——
(3e, 72 Yoay,) *- Lup (840, +0) (I ¢ 507 7 % %0 Pry s
* ) "
w (&6 +6 +6, ) *
A . a . -
+ 0+ towes (XK K 94 ss1E,
(3.40)
where the summation I is taken for ky and k,, and
a _ 3 1l 2 2
0 = Dc-'-A‘- ﬁ(l-”\)vii(faiAL) ,
82 * A * (3.41)
b, = k%, Av.= (14\) (v.b + wa’k) - iv
Ix? y g n iy 2 Ti

*
In egs. (3.37)-(3.40), we have chosen vg= Vi to drop the
derivative with respect to y,. On the right-hand side of

]
egs.(3.39) and (3.40), sy and Sw denote the frequency shifts

%*
Sw = wan[ 140(b)]1 , Sw' ~ Swb .

"

X ]
The quantity Yk= wn(5k+6k+5k ) corsesponds to the linear

growth rate and the factor of k™1 %% means the reduction of the

growth rate due to the change in gradient of the background
density. The phase difference between p and ¥, §,, must be

determined by solving eq.(3.27) under appropriate boundary

conditions. We use the relation derived from eq. (3.27)
*

rd * w
s, | £ (1+2) w . 3 T. . |f
K g ——Pras 2 e+ a2z S L gyt
HlE kn?Dn ax3  2kZD_. |f_

(1+\) o (£
w g la 3|19 -
¢ —— U ag| 4P Bl T ] . (3.42)
KuD |9 9x° g kf+



84. Model Equations and Transition from Laminar to

Turbulent State

Nonlinear behaviours of the System under consideration are
to be described by the set of these four equations for h, g, £,
and £f_ given in the Preceding section. However, the essential
properties of quasi-linear coupling can be treated by the

following simplified set of the model equations for h, the

y
e - Do b + 2 "X 5 o Ly - S fa.f + L2
2 ax? VY lekg ST ] [ | ox?
(1+8)D_, Y T k,u
- ¢ L (- 3 S 103 . (4.1)
(1+A)x§" al k2|x] w W © 3X
y
e =Ll sy - - Lodhy
2 ky ,K, ’ OJ*
DY T, .
-Z%.(1+A)viia;Aif + % LB = 8°h ¢

(1+A)x;" k; [k |k 3x?

Y 3 (148)D Y Wep
k2 |x| ox3 (1+2) x . a?k? “n “n I« |
Y Cn 1 Y (4.2)

where

’

Y - w;2(1+l)(1/2)(k; al)/kiD_,

L [

v = w;_/[2(1+l)w;]
i

These equations are obtained from egs. (3.37), (3,39) and
(3.42),
We rewrite the egs.(4.1) and (4.2) in dimensionless form

as
- 17 -



OH _ B%H L 5 [y (14y- ) papend8 p2j- gvr 2 F2
(4.3)
oF oH 5H 2 33H " dH
= - - 22 (1~ &= - N AP~ (p2— - 2 - ==)F
5T p(l+v ag)(l ag)AF na (uags v (1 ag)
+ 238 e (4.4)
983
where
H = ('lr/|;<|jl,)h , F = ('rr/||<|9,)f ' k = kYQ,/'n = ky/kx ’
= 2 = = = 2
T 'YLtz("/ﬁky) y & (m/2)x kxx ' o ky DCJ_/YL
m* w*
[ 3 DC" Tl " (1+B)DC" 3 Te k"uO
\Y —‘-———————i—"——‘:);' r V= ; P 2('70)*'*' w*)
2(1+))X,, n kx(l+)\)xc"ai n n
2
A = 9~ _ k2
3?2

Moreover n is an important parameter which is proportional to
the ratio of the viscosity damping to the linear growth rate

and is defined as

. ..k, 2D
_ 3 N 2\)11 - 3 2\).'L]. " Cu
n = ge () Okap) k2ih = op Oeag) —Sgemes - (405)

Without loss ofbgenerality, we hereafter may fix k, and ky
values. In experiments, k, is usually specified by the length
of device or by the configuration of the magnetic field and ky
takes a discrete value since the y direction corresponds to the
azimuthal direction of plasma column.

When we require the fixed boundary conditions F = H = 0,
at both ends of the slab, the equations (4.3) and (4.4) can

be solved by decomposing F and H into the Fourier components

= 2 i = L i .
F b Fp sin(p&) , H D Hp sin(p&) . (4.6)

- 18 -



Hence we have

ggg = Tppt pgp"[“(l+“)Kpp'p"+2“"Mpp‘p“]Fp'Fp"
o p'é"p”(Npp'p“pm" Spp'prp™ HptFpuFpm + (4.7)
§§E'= RS Kprppt* ¥ "Mprpprt Z =y U
DR S MNQ oo™ = SowoioomdH (H LF . . (4.8)
4 p'p"p" "p"p'pp p"p'pp™ “p'"p"’p
By, = ) - 0%+ k)] (PP K2)42un (4.9)
where
_Pp = ap?
Kpprpn= P(R""+ kz)('ap,p'+p"+ ®pip"p'* Cp,pr-pn)
"pp'p"T P00, prapnt Sp puprt 5p,p;-p") o

. 2 2
NP plpnp.m“ pp' (P'" + k ) ("ap’pl_'_pn_'_pm"' Gp,pu_',pn_Pm

nit 6

) ~ 6
p,p'-p"+p"‘ p,p'-p"—p p,_pl_p!l+plll

+ 6p,-p'+p"-p"'- 6p,-—p'+p"+p"') ’

. - 3
®pp'prp"” PP N ®p,p'+p"-p™

+ - | ] m+ | "
6p.p'-p"+p"‘5p,p'~p'—p dp,-p'-p"+p'

+ 6p,-p'+p"-p"'~ (Sp’_pll+prv+pvll) ’

U = '3 (- wt - v
pp'p"” P77 8 prypnt Sp propn” 6p,prpt)

and 6p p' is the Kronecker's delta.

4
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From the anlysis for (4.6) and (4.7), we obtain the
following results for each stage which'has more unstable modes
with the decreasing "order parameter" n included in (4.9).

(1) Equilibrium

There is no unstable mode, if

n.>n [u(14V) (L+k2)+2v"1/(1+k?) 2 .

(o]

We can find the stable steady sta?e with Fp = Hp = 0.
(2) First stage
If n,>n>mny = [ (14V) (4+k?)+2v"]/ (4+k?) 2,
then one mode F, becomés unstable associated with the modification

of background density HZ' In this stage, we obtain a simple

set of the equations for Fy and H, as

d

7= Hy= -PZHZ-[2u(1+V)(l+k2)+4V"]Fi+4u(3—k2)H2F12, (4.10)

a - ’ 2 " '
3 v, ylFl+[u(2+v)(1+k )+2v"+4 (v'-p) JH,Fy
- -k 2 2
2u(3-k )H2 Fl ' (4.11)
where

r, = 4a , Y= u(1+v)- n(1+k?) 1 (1+k?) +2v"=(1+k?) 2 (n~ n).

We then find the steady state solutions, (which is indicated

by the notation S[1]), with the saturation levels

c+(1+k2)2n _tvd
H, = = , (4.12)
4Y(3-k?%)
a [c+(1+k2)2qct¢31 1/2
Fig= *{ } , (4.13)

u(3-k2)[c—(1+k2)2qci/3]
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where

c = n(k?~ 3) +4v' ,
(4,14)

d

I

[o+ (14k2) *n 1" +8u(3-k?) (1+k2) 2 (n_-n) ,

From the stability analysis of S[1] state, only the solution
with the choice of the negative sign for +,/d in egs. (4,.12) and
(4.13) is acceptable. The dependence of H28 on the "order
parameter” n is shown schematically, in Fig.,1. The excitation
as shown in Fig,l1 (a) is a soft type in which the amplitude
varies continuously with n under the condition c + (l+k2)2ncg 0.
On the contrary, for c + (l+k2)2nc < 0 and 3 > k?, as shown in
Fig.1l (b), the amplitude of HZS increases abruptly to some
finite value as soon as the value n becomes less than the value

nc' and drops abruptly to zero for n=n0>nc where

o= Notle+ (1+k*) 12 /(81 (3-k?) (1+k2 ). (4 15)

This is the hard excitation.G)

In this stage, the particle flux and the heat fluxes are
given by

r
X

-k2) - 2) _Dn
D, lklNg 1+ YH2UAKD) sy Uk vodyozyr

2u(3-k2)

Qo x (x=2/2)

_ e YA+2p (1-k2) ~y (1+k2) y=4y ' =2, "
= NgXg. |k _|T +N D |k|T
0%a'"e! e M0 Cy ' e 2y (3-k2)
(42]kl/m (1+8) (1+k2)D_ /5E +8v"/(1+p)

x[1+ ]
YA+4 1k 24 (1+k 2) y=4 y' +2 "

’ (4.17)
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Qi (x=2/2)
2 2
= Noxi g |74 +NGD lKITifa"”‘l+k )~H(1+k7) V-4V’ -2V"
- 21 (3=k?)
szzv'/(nza;)
x[1+ _ , (4.18)
YA+4pk 241 (1+k 2) v=4v'+2V"
where
© _ 4.66v .T /m_Q 2 1_ 9. .7, /m.02
Xea™ #:°9Vi1e/Me e r Xey PR A T Rt T

Second stage

(3)

if ny>n>n, = [u(1+v)(9+k2)+2v"]/(9+k2)2, then Fl and F2

and H,.

become unstable associated with H1 2

must consider four coupled equations for Fl’ F2

Consequently we

' Hl and Hz.

There is another branch of steady state s[2], with all

in addition to S[l]. The stabil

1’

Fl,Fz,H
solutions depend on the value the parameters su

Hz#q

and v"

(4) Subsequent stages

ity of these

ch as k, v, v'

As n decreases further, the number of unstable modes

increases, and the state becomes turbulent.

§5 The Concluting Remarks

The nonlinear evolution of the collisiona

the consequent par
using a systematic expansion.
The most importa

one in real space.
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besides the density one are considered. 1In the first order, we
find that the amplitude of the density perturbation is equal to
that of the potential perturbation. The temperature perturbations
are found to be zero, which comes from that in the present
ordering scheme the electron and ion heat conductivities along
the magnetic field are large enough. 1In the second ordér, the
characteristic frequency is determined by taking the modification
of the background density into consideration and the phase
shift between the densiy perturbation and the potential one are
obtained. The temperature perturbations are given in this
order. In the third order, the nonlinear evolution équations
for the modification of the background density and the drift
wave are derived. The fact that the modification of the
background density flattens the initial density. gradient and
reduces the growth rate of the drift wave is consistently
incorporated into these equations. The particle and heat
fluxes are calculated. It should be noted that in the particle
and electron heat fluxes the electron and ion temperature
gradients contribute to carry particle and heat from the lower
to the higher temperature region, contrary to the ordinary
effect of the density gradient. We may understand that this
effect is originated from a tendency of nTe= const. through the
parallel motions of the electrons. 1In the ion heat flux, the
contribution of the ion temperature gradient behaves in the
Same way as that of the density gradient.

Interesting properties of nonlinear behaviours of the
system under consideration have been revealed by the proposed

model equations given in eq.(4.3) and (4.4). Nonlinear states

- 23 -



are characterized by the order parameter n defined in eq. (4.5)
from marginal stability to successive states with increasing
number of unstable modes. In the first stage where only one
mode'is unstable, we find the steady state solution which is
nonlinearly stable. A remarkable feature is the occurence of
the hard excitation which arises likely when the ion temperature
gradient is in the same direction as the density gradient. We
also have the case of the soft excitation according to the
values of parameters.

For the subsequent stages the analysis is not easy. We
have worked out a numerical computation for the isothermal
case7) and found that in the second stage where two modes are
unstable, there exists no steady solution, the whole problem
becomes time-dependent and the amplitudes of the interacting
modes are bqunded. We may expect similar results for the non-

isothermal case. Numerical computation for this case is in

progress and will be reported elsewhere.
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Figure Captions

Fig.1l. (a) Soft exitation for c+(l+k2)2nc > 0.
The amplitude of st varies continuously with n.
(b) Hard excitation for c+(1+k2)2nc< 0 and k2% < 3.
The amplitude of H25 increases abruptly
to some finite value as soon as the value n
becomes less than Nee When n increases, it
drops abruptly to zero for n = o > ng- The

stable and unstable states are indicated by the

solid and dushed lines, respectively.
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Expressions of L(o), L(l) and L(z)

Appendix

are
1 2 2 2
L(O)= -DC __3__ ’ DC 9 ’ -(1+8)D "_3_ ’
nazz "322 322
0 r 0 14 o ’
-(1+g)p_ 2° (148D -2 | _[(14g)D_ +ye 12
C3z2 Craz2 | cn Xen 322
0, ’ 0 ’ o 4
= L (4,5 = 1,2,3,4,)
J
where
= css— + = -— —
L11 at, THX ?C"azz ' Lia = vy Ty, < ¥ DCuBZz ’
L13 = Fugyz + (1+B)kx Penyz v T =0
(1) ~ ~ (1) ~
D 1, 129 * 3 9
L., = (1+b) - =v* H 2 L =V ag—+ As— Db ,
21 7 3t 2'n "3y, ¢ D22 n3y, 3t
(1) (1) A N
- _ 9 _ -1 _* P
L23 =0 ’ L24 = a—t- b (2)) an —'—ay r
1l 0
(1) 5 52
L31 = uo‘-a-—z- + (14+B)«k x Dc“%——z- ’
z
(1) * 3 3 a*
L32 = -Z-VTQ -——ay - 2\10-8—5 - (1+B)k x DC“ S !
: 0 _ 9z
(1) 2 2
3 3 7 ) d e 3
L33 = E 'S—E-— + (5+ -2—B)u0§-z- + (1+B)K’ X DC”~—+2 K X XC"—_Z
1 9z 0z
(1)
L3yg =0 ,

- A-1 -

=X

’

0,

c"a

N

N




(1)

(1)

L,, =0 Ly, = - 3 Vpisy
41 r 42 2 TiayO !
(1) (1)
L =0 L - 3 T‘a
43 ' 44 20y
L(2) lLifz)l (i, = 1,2,3,4)
3
where
(2) 3 ) 2 i
11 3t, gdy; Ca () Cyg?
(2)  « * 2 32
le —-Vn 5§— - KXVn §§— + (kx) Dcn 2 '
1 0 z
(2) 1 2 (2) -1 2
L1z = TVeilels Lig = = (20 "Weife
(2) 3 a ~ 3 A2
b1 = C3g; T Varyy) P T et 0%
-1,.-1 * * 32 -1 * *
+ 0T vy - Vg dgges ¥ % Ve, (VT
i 1 i i
(2) ~ -
_ 3 _ 3 3 * 9
Ly = Mggy = Vaay'P * 10MVii® * Vn 3y
2 1 1
-1, * * 92 S L -
+ 05wy * 20n) e T 837V Vpgt A
(2)
. _ _]___ 2
Lys = TVei%"s
(2) ~
Lyg = ¢ 3t, Vgayl)b (=2X) Vg8, 7Y
-1 * 32. . -1 * * 32
+ 2009 Vgge + (A% VaVnigay,
(2) o 32
Ly, = - (148) (kx) 2D ’
Cn 2
0z
(2) 2
_3 3 2p_ 2
L32 = 2vTan1 + (1+B) (KX) DC"azZ ’

- A-2 -

A,
1 ~ 9
- fvTibayl
-1 * 92

A Vn) axayo ’

0

*
n
1% 32
Vn) Bxayo !

~2

.b
ei




(2)

3 9 _
N LB ae s
41 ! 42 2VT, ayl !
(2) (2)
_ =3, .3 _ 9
Ly =0 Lyg = 3¢ 3, ~ Vgdy,) -
where ag is the electron gyroradius.

Nonlinear terms S are expressed in_terms of dimensionless
s T

~

. _ n - _© - e
quantities p = N{x) 1] Te(x) ’ Ce TETiT and C Tl(x)
— ‘r ‘
S = Se.
Si
STe
STiJ
- * 3y Te o 2 2 92
Se= —pv, 5y~ mn (b x lw)-le + Dc"——;[109(1+p)-pl
e‘e 92
1 2 2 2p 92 ) )
+ D, ——4, + £ - p —— p-D =2 —
S (N“p*) wv y C"Ceazz P~ Dondz %e 3P ¢
_ oY T > > 1 2_2 * 3p
S;= -V, 3~ mg (b x Vlw)-le + Dcx"_ZA;(N pe) + vae 3y
e'e 2N
1,2 . Y _9p
+ 2Aai(6;p $L+ pAl) ——I _ (A P v WP 3 3t1
1 .‘ l—> — .+
+ §niai{(§l;i b x 3l)Alp (ﬁlp b x 31)Alci
32 32 32 32 32 82
+2[ g. ( — - )p - P — - —9z.1)
axdy °i ax2 3y 2 X0y x2 Ay 2 i

1
-3y

T.

a! {4 p(b x 3lw°3*p) + §¢°'$;(E x?1¢-$1p)
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S x TV + (B ox Vy0eV,) A0

2@, 2 - @D 5T

- 205y -(B Ty 28
+el = gb,b -k x VeV, 52

+ pgg (8, + 20,0-7,551)

+ %Azsziai"[(up) (B x 7,_11:-3_,_)A_,_1p+'<'(i§ x 3&-31) =
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4

SN ER AR A
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2 32p 3 E.'
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The expressions of 8(3) ](.3), S,§,3) and S,{,3) which appear in
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egs. (3.33) - (3.36) are
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