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ABSTRACT

New formulation for determining the two-fluid equilibrium
of an axially symmetric plasma is presented. The inertia
force due to plasma motion is taken into account exactly in
the form of a modified electrostatic potential (due to the
centrifugal force) and a modified magnetic field (due to
Coriolis' force). A set of partial differential equations
which determine the modified flux functions and the self-
consistent electric and magnetic fields are derived under the
assumption that the pressure is isotropic and is known as a
function of the density and the flux function from an equation
of state. In addition, the poloidal drift flux on the
modified magnetic surface and the density and temperature
in the absence of both the electrostatic potential and the
plasma flow are assumed to be known. Our formulation is
particularly useful for the case when a local charge separation
causes a deviation of the equipotential surface from the
magnetic surface, as has been observed in several recent
experiments. The result is also formulated in the form of a
variation principle which contains no constraints and hence

is useful for numerical and perturbational analysis.




I. INTRODUCTION

Toroidal equilibrium of a plasma has extensively been
studied within the framework of the ideal magnetohydrodynamic
(MHD) theory. For an axially symmetric plasma, the equilibrium

state is determined by the set of equationsl

3%y , 3%y _ 13y _ _ 3p2¢g @2 1 d 2
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(1)
P = P(y) , rB¢ = 2I(y)/c ,

where we used the cylindrical coordinate system, (r,¢, z),
¢(=2nrA¢) is the flux function, P and I are, respectively,
the plasma kinetic pressure and the axial current which are
arbitrary functions of Y , and B¢, A¢ are the ¢—-components
of the magnetic field and the vector potential, respectively.

Applicability of this ideal MHD theory is, however,
limited on the following three points: 1) the inertia force
due to the plasma motion is neglected; 2) the electric
field inside the plasma is left undetermined and its effect
on the plasma motion is taken into account only through the
E x B drift; and 3) generalization to multi-component plasma
is not straightforward.

Effects of the inertia force as well as the gravitational
force on the one-fluid MHD equilibrium were first studied by
Woltijerz. He showed that the MHD equilibrium is determined
by a second-order partial differential equation whose structure

becomes either of elliptic type or of parabollic type depend-

ing on the value of the flow velocity. Dobrott and Greene




have examined the stationary state of an axially symmetric
plasma using the collisionless MHD equations with anisotropic pressure
tensor together with the equations for the guiding centers of
particles, and have derived a second order partial differential
equation with the aid of the macroscopic and the microscopic
constants of motion. In particular, they noted the possibility
of having a weak solution (shock solution) in the parabolic
regime, in which case he derived the jump condition.

Effects of plasma flow have also received considerable
attention in connection with an anomalous increase of the
plasma diffusion4’5'6. In particular, several authors7_10
have pointed out a formation of steep density gradient when
the plasma rotational velocity approaches a certain critical
value. To the author's knowledge, these works have been
restricted to the investigation within the framework of the
one-£fluid MHD theory.

Now, a steep density gradient can cause a charge separation
in a plasma, which invalidates the one-fluid MHD equations.
In particulars, the equipotential surface can deviate from
the magnetic surface, whereas in the one-fluid MHD theory
they are identical to each other. Recent experimental result11
for the JIPP-I Stellarater indicates the existence of a
convection flow of the plasma and the associated deviation
of the magnetic surface from the equipotential surface.

Leung et al.12

have observed a stationary state in a picket
fence configuration where the electrostatic potential varies
along the magnetic line of force.

In this paper, we present a theory for an axially




symmetric plasma equilibrium based on the collisionless two-
fluid equations. Our formulation includes the electron and
the ion inertia forces, and can describe the situation where
the charge separation yields an equipotential surface different
from the magnetic surface. The basic physical quantities
which we assume to be given are 1) the distribution of the
poloidal particle flux as a function of a modified magnetic
flux function (modification due to Coriolis' force of the
plasma flow), and 2) the density and temperature distributions
in the absence of the electrostatic potential and the plasma
flow. Knowing these quantities and assuming an equation of
state which relates the plasma pressure to the plasma density
and temperature, we can determine all the other fluid and
electromagnetic variables as solutions of a set of partial
differential equations.

The method to be presented in this paper can readily be
generalized to a multi-component plasma. It can also be
generalized to a helically symmetric plasma. Although for
simplicity we assume an isotropic plasma pressure, generaliza-
tion to the case of an anisotropic pressure tensor is also
possible. These generalizations will be presented in a
separate paper.

The present formulation of the two-fluid plasma equilibrium
can also be phrased in the form of a variation principle.
Greene and Karlsonl3 have derived a variation principle for
the one-fluid MHD equilibrium. Whereas this variation principle

is to be solved subject to some additional constraints, the




two-fluid variation principle is free from the constraints
and hence directly determines the flux function.

In Sec. II, we present the basic two-fluid equétions
where the inertia force is divided into the centrifugal force
and Coriolis' force, these modifying the electric and the
magnetic fields respectively. In Sec. III, we derive the
equations which determine the plasma flow and density when
the electric and the magnetic fields are given. The latter
are determined from the Maxwell and Poisson set of equations
in Sec. IV where the final set of partial differential equations
which determine the flux functions are also given. Sec. V is
devoted to the derivation of a variation principle which is
equivalent to the partial differential equations derived in
Sec. IV. A brief conclusion is added in the last Section.
Two Appendices deal with a similar formulation of the ideal
MHD equilibrium and some specific examples for the two fluid

equilibrium.

II. BASIC EQUATIONS

We consider a plasma described by the electron and the
ion fluids with no mutual exchange of energy and momentum.
For simplicity, we assume an isotropic partial pressure, Pe
and Pi’ although generalization to anisotropic cases can
readily be made.

The two-fluid equations for the force balance and the mass
conservation along with the coupled Maxwell and Poisson equa-

tions can be written in the form:
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where Gj' nj, qj and mj are, respectively, the fluid velocity,
density, charge and mass of the j-th species of particle with
j denoting either the electron (j=e) or the ion (j=i), V
denotes the electrostatic potential and B the magnetic field.
In Eq.(2), the inertia force (—Gj-ﬁ)Gj, can be divided
into two parts: centrifugal force, —$|vj|2/2, and Coriolis'
force, $j x (§ x $j). The centrifugal force is derived from
a scalor potential which can be incorporated into the electro-
static potential as

1932
5 lvyl® - (7)
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We refer to Xj is the modified electrostatic potential.
Coriolis' force has the same tensorial character as the
Lorentz force due to the magnetic field and hence can be
taken into account by introduction of the modified magnetic
field defined by

> >
. = B +

. (8)
J
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The modified magnetic field satisfies the same relation as

Eg. (6) for the real magnetic field, i.e.




V-d. =0 . (9)

This equation will be used in place of Eq. (6).
Using these modified electrostatic potential and magnetic

field, we can write Eqg.(2) as

<N
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In accordance with the modification of the magnetic field,
the flux function is also to be modified. For an axially
symmetric plasma, which we consider in this paper, the

modified flux function, wj(r,z), is defined by the relation

3. Y.
& _ o 1 %y 1 oY
Qj = o oz ! Qj¢ ' Iz 3T ) v (11)

where we used the cylindrical coordinate system, (r,¢, z).

To complete the basic equations, we need a relation which
determines the plasma pressure Pj in terms of the other fluid
and electromagnetic variables. Such a relation can be provided
if we assume an equation of state which relates the pressure
to the density. 1In the two-fluid equilibrium, the isobaric

surface, Pj(r,z)=const., and the modified magnetic surface,

wj(r,z) = const., are in general different from each other,
i.e.,
o(P., y.)
—d J x5 (12)
a(r, z)

We can then use Pj and wj as independent variables instead of
r and z. The equation of state will then yield the following

form of relation,




n, = n.(P. .) . (13)
3 J( 30 Y5
The simplest form of such relation is, nj = Pj/Tj(wj), where
Tj is the temperature.
Our basic equations are then Egs. (3), (4), (5), (9) and

(10) supplemented by the relations (7), (8), (11) and (13).

ITI. DETERMINATION OF FLUID VARIABLES

In this Section, we derive the equations which determine
the fluid variables in terms of the electric and the magnetic
fields. To simplify the notation, we shall suppress suffix
j throughout this Section.

We start from the ¢-component of the force balance equation
(10) . Noting that all quantities are independent of ¢ , we

find the relation

0= 93.%
T 27r vevy o,

alQ

which admits us to write v in the form

ad

<

v = (-=h(r,z)

oY
’ V%h(r,z)g;) . (14)

Q
[

The function h(r,z) can be determined from the equation of

continuity (3) as follows:

— T.(a2y = 1 9(y, nrh)
O = V- (nv) T 3(r 2)
or
h(r, z) = F(y)/nr , (15)
where F(Yy) is an arbitrary function of Y. This function

specifies the poloidal drift flux of particles on the modified

magnetic surface and is determined by the balance of the




production rate and the diffusion rate of the plasma. 1In this
paper, we are neglecting these effects, whence we simply assume
that F(y) is a known function. Then, since the density n is
assumed to be known by the equation of state (13), the r,
z-components of the fluid velocity are determined in terms of
P and .

The r, z - components of the force balance equation (10)

can now be written as,

alQ

VP = o. (16)

3

v
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Noting the relation (12), we express x as a function of P and

Y, i.e. x = x(P,¥), and write

Uy =%§-§P+g—wx- vy . (17)

Substitution of this relation into Eg. (16) then yields

Ix - _ 1

P nqg (18)
FQ

ax_1 e o

oY c (2ﬂr rn) ) (19)

Since we are assuming the equation of state (13), Eq.(18) can

be used to determine the modified electrostatic potential ¥

as a function of P and y; there is an integration constant
which we determine by assuming that the density profile ny (V)

is known in the absence of the plasma flow and the electrostatic
potential, in which case X vanishes by definition. The
determination of yx for two specific cases, the isothermal case

and the adiabatic case, is given in Appendix B.




Before using Eq. (19), we determine v¢ and Q¢ by

substituting Egs.(11), (14) and (15) into the definition

of & » 1.e. Eq.(8), obtaining

oV oA
L _ “ome, “T¢
2Tr 3z 3z a + 5z (20)
= —¢9 ¢ F(y) 9y O F(Y) 3y, mc
Q¢ B¢ 0z [ nr az] * ar[ nr ar]} q (21)

1
21Yr 3r (22)

where we introduced the ¢-component of the vector potential

by the standard relations,

, B =11; 3 (ra.) (23)

By = - or ¢

dA
r 9

Z zZ

Equations (20) and (22) can readily be integrated to give
Y = 271r [%? v + A ] + ¢ , (24)

where cy is a constant which we can choose to be zero without
loss of generality. Equations (21) and (24) determine Q¢ and

v in terms of the magnetic field and the known functions,

¢
n(P,y) and F(y).

Having expressed all fluid quantities, n, 3, x and Q¢ ’
in terms of the electromagnetic variables and the known
functions of P and ¢ , we can now use Eg. (19) and the
definition of x , i.e. Eq.(7), to determine P and Yy as functions
of r, z, ¥ , A and B, . These equations can be written as

¢ ¢

follows:

_10_
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= ¥+ = (= ¥y2 4 +
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where Y, is the usual magnetic flux function,
Yo = 27TrA¢ . (27)

IV DIFFERENTIAL EQUATIONS FOR TWO-FLUID EQUILIBRIUM

The electromagnetic variables, V¥ ’ A¢ or Yy, and B which

¢I
we assumed to be given in Sec.III, are to be determined self-
consistently from the Maxwell and Poisson equations.

First, the electrostatic potential Y is determined from

the Poisson equation (4, which in the cvlindrical coordinate

system reads,

19y _
+;§?_ am i g. n. . (28)

The magnetic field is determined from the Ampere equation
(5). The r, z-components of this equation can easily be

integrated to give
B =—[ I a. J Fj(wj)dwj + Io/2m] (29)

¢ cr j=e,i J

where I, 1is an integration constant which corresponds to the

externally applied axial current that can produce the toroidal




magnetic field in the absence of the plasma. This equation
determines the toroidal magnetic field in terms of the known

functions. The ¢~-component of Eq. (5) can be written as

DAy + 2 (eay - L2 (a
dz ® or o} r or o}
2
5 gin.
=-= 3 41 1y, - 27 ], (30)
c c s m, J ¢
Jj=e,1 J
or using VY, defined by (27) ,
2 2 g.2n
3 Yo 0%y _ 1 3Yy _ _ 4m J 3 -
372 + 3r2 r 3ar c? ]il o mj (wj Vo) . (31)

Combining Eq. (29) with Eqg. (25), we can eliminate B, to obtain

¢
X 4 F. m.F.
ng ogpt - o3 U0 0 wjl———ﬂ——(w - Vo)
Jj J J 4n’r?c mJ

—
™

2c2 T3 gl . B J Fo(g)dh, + Io/2m],(32)

4

where we used the relation

D (F 3y A (F 3y, _ 3 . _F
Bz(nr az) + ar(rn ar) v ( > Vi)

B
Il

The set of partial differential equations, (28), (31) and
(32), now completely determine the two-fluid equilibrium of
an axially symmetric plasma as expressed by the spatial
distributions of wi’ we, Yo and ¥ . 1In these equations,
the functions F (w ) are assumed to be known, since they

correspond to the poloidal drift fluxes which are to be

determined by the plasma source and the diffusion process;

- 12 -




the density nj is known as a function of Pj and wj from the

equation of state (13); the modified electrostatic potential
Xj is determined as a function of Pj and wj by integration of
Eq. (18) under the condition that the density distribution in

the absence of ¥ and 3j is known; and the pressure Pj is

determined as a function of wj' Yo and Y by the relation (26).
V. VARIATION PRINCIPLE

In this section, we show that the system of differential
equations, (29), (31) amd (32), can be derived from a variation
principle. Namely, we introduce the Lagrangean defined by

m.F

Y

2
f rdr dz[ I {P.+ [Ty, |2}
j=i,e J r?n. ]

v J

L[wil we, wOr kl;]

1 2 l6ﬂ2 ’ 2
+ gF{lﬁwl + g 'Ei . qjj Fj(wj)dwj + I,/2m)

Jj=1i,
- —— [V, | %) (33)
4m3r?
and show that
L = 0 (34)
yields the equations (29), (31) and (32). 1In the integrand

of Eq.(33), the first line is the sum of the kinetic pressure

Pj and the dynamical pressure due to the poloidal motion of

the plasma, njmj(vji + Vj; ); the second 1line represents the
electrostatic pressure, l%?,z/Bﬂ, and the toroidal magnetic
pressure, B¢2/8ﬂ (see Eq.(29)); and the last line arises from

the poloidal magnetic pressure, (Br2 + Bzz)/8ﬂ. In this
equation, Pj and nj are determined from Egs.(13), (18) and

(26) .

- 13 -~




We first take the variation of Eq.(26); noting the relation

X2 X
§X.(Pay V.) = ==L 6P, + —3I sy,
XJ(pJ w]) an j awj w]

and using (18) and (26), we have

9X

1 .
- §P. + —3L Sy,
a4 ] awj J
m.
- ] 2 1 2,2 )2 1 F.2'+ 2
SY + ij {r2nj 6(E;)Fj (Vv wj) + ) S ( j;ij| )
]
2q° _ _
+ 41T2r2m2c2 (w] WO)((SwJ 511)0)} . (35)

Therefore, the variation of the first line of Eg. (33) can be

calculated as

m.F.% X
s By + —%—1- Vs [2} = ayng 552 oy
n.

ren, 173 3y J
m. N
- qun, 8Y + —3I— § (F.2 |Ty. |2?)
J ] 2r?n . J J
j
n.qg.?
- —L Lyl - w8 v - Su, ). (36)
41%r?m.c? ] J
j

The third term on the right-hand side can alternatively be

written as

mj. _Vr N w]
;3;f "Fy (V) -8(V J Fy(by)dvy).

J

The variation of the remaining terms in Eg. (33) is straight-
forward. Setting &y 3 = 6 Yo= 0¥ = 0 on the surface of the

pPlasma, we then obtain after integration by parts,

_14_
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2
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j=i,e J 3 4m j=i,e 41r2r2mjc2
t s oG Tua) ) (37)
Equation (34) then yields the equations (32), (28) and (31).

We note that the variation principle given here is subject
to no constraints other than the conditions that wj, ¥ and ¥
are fixed on the plasma surface. Therefore, this variation
principle will be suited for numerical and perturbational

analyses of the plasma equilibrium.

IV. CONCLUSIONS

We have derived a set of partial differential equations
which determine the two-fluid equilibrium of an axially
symmetric plasma. The equilibrium conditions are determined
by the system of equations (28), (31) and (32) for ¢i' we r Vo
and Y, supplemented by the relations (13), (18) and (26).

The fluid and the electromagnetic variables, nj, 3., Pj’ B and

J
E, can be expressed in terms of b;r bor Yo and ¥ by (13), (14),

e
(15), (18), (24), (25), (29) and the relation E = -~ ¥ ¥ .
The system of differential equations (28), (31) and (32) can
be formulated in the form of a variation principle (33) and

(34). This variation principle is free from constrairts and

- 15 -~




hence will be suitable for numerical and perturbational
analyses.

The inertia force due to the plasma flow is taken into
account by introducing the modified electrostatic potential
and the modified magnetic field. The electrostatic potential
is determined self-consistently by the Poisson equation and
the equivotential surface is in general independent of the
magnetic surface, in contrast to the case of the one-fluid
MHD equilibrium. The method presented here can readily be
generalized to a multi-component plasma, such as the D-T
mixture.

The present method can be applied to various different
situations. It can be used either for a toroidal plasma
or for other types of axially symmetric plasmas. Application
to a helically symmetric plasma as well as to an axially
symmetric plasma with an oscillating field will be discussed
in forthcoming papers.
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APPENDIX A

FORMULATION OF THE IDEAL MHD EQUILIBRIUM

The basic equations for the ideal MHD equilibrium are

given by
V-(pv) = 0 (A-1)
T.23y3 = - 1 1 -
(Vv-V)Vv = p'v’1>+41Tp (V x B) x B (A-2)
> 1 ~» —é _
-V‘P'*"EVX =0 (A-3)
V-B =0 (A-4)

where p is the plasma density. From the condition (A-4) and
the axial symmetry, we can introduce the flux function ¥ by
the relation
= (- L1 3 1 9y -
B ( 2nr 9z ' By + 777 3¢ - (A=5)

Using (A-1), (A-3) and (A-5), we find

S - (- EW) 3y F(y) 3y _
v ( rp 9dz ' V¢ ! rp or ) (A=6)
\Y F(y)B
o _ o _ -
STr o G (y) (A-7)
1
y = P J G(y)day , (A-8)

where F(y) and G(y) arelarbitrary functions of ¥ which are
undetermined within the framework of the ideal MHD theory.

Substituting (A-6) into (A-2), we get

_18-




l 212 2 _ _i > E F >
> V19 > V(v - 2 v ( rzp§¢ ) Vy
- -lgp s 1 9l %yy- 0 G, (a-9)

P lém3p r? 4mrp 0

F_ 3(y, rvy) _ 1 o(y,rBy) -

r2p d(r,z) 8m2r’p 3 (r,z) ° (A-10)

From Eq. (A-10), we have

rB¢

F‘rv¢ - gz = H(Y) (A-11)

where H(y) is another arbitrary function of . Substituting

(A-7) and (A-11) into (A-9) yields

0=V { - %|?’|2 + 2nGrv¢ - f ——QE*—}

-1 £ 2 dF _ o 2 4dH
IE:; v(rz $w) 4ﬂrp {8“ rv¢ dw 8m dw}
- 2mr v, g%] v, (A-12)

where we assumed that the plasma density p is a known function
of the pressure P and the flux function Y . We can write 3

in the first line of Eq.(A-12) as V¢ d/dy. Then using (A-6),
we finally obtain the following equation to determine the flux
function,

3(?% YY) - 16m°F ¥ (—— Ty)

r2p
B
P dp ¢ (G ar
l6m°p [ 30 J s 2m o (dw £V, dw)
- 27r v¢ %% - Qg%il] ' (A-13)
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where

1, F? 2 2 J d .
= = —_— + -2 ’ A-
R(Y) = 5{ 7553 [Vw]? + v o) Eﬁifﬁﬁ‘ merv, . (A-14)
and B¢, v¢ are, respectively, determined from (A-11) and (A-7)
as
2 2 _
B _ 8m° [2Tr°GF H] , (A-15)
¢ 1 - 1673F2/p
2~ _ 2
. _ 2m[r°G 8m°FH/p] . (A-16)
¢ 1 - 167%F2/p

Note that R(Y) can contain an arbitrary constant which we can
choose to be zero without loss of generality. Equation (A-14)
can be regarded as the Bernoulli equation for the fluid.

It is easy to rewrite the differential equation (A-13) in
the form of a variation principle. Indeed, by introducing

the Lagrange function

3 2 17y 2
Liy] = J rdrdz[p + & I$¢|2 + 87’ (27r?GF-H)
r2p? r?2(1-16m3F2?/p)?
1 2
-— |wl* 1, (A-17)
32m3r?
we can easily show that
SL[Y] = 0 (A-18)
yields the equation (A-13) with (A-15) and (A-16). The

Lagrange function (A-17) can alternatively be written as

1

Liy] = J rdr dz [P +p]$p|2 + 5

2 _ 13 |2 -
(B¢ |Bp| ) ] (A-19)




where Gp and §p are the poloidal components of the velocity

v and the magnetic field ﬁ, respectively.

The similarity of this Lagrangean to that for the two-fluid

is self-evident.




APPENDIX B

EXAMPLES OF THE MODIFIED ELECTROSTATIC POTENTIAL

The modified electrostatic potential x(p,¥) is determined
from Eg. (18) and the equation of state. Here we derive the
explicit expression for yx for two typical cases, the isothermal
case and the adiabatic case.

We first consider the case where the temperature is

uniform over the modified magnetic surface, i.e.

P= n T(y) . (B-1)

Substituting this relation into Eqg. (18) gives

Zn

P
q (O T (B=2)

X(le) = -

where n; () is the density in the absence of the electrostatic
potential and the plasma motion. Substituting (B-2) into (7),

we can determine the equilibrium plasma density in the form

2
n=n, (¥) exp [~ =3(v + S EWF, 2 4 LWVl (B-3)
T(y) 29 r2n? Am1%r?me?

This equation is nonlinear with respect to the density due to
the presence of a poloidal flux F(y). In general, there exist
two solutions for n for given n, (¢) and F(¢), provided that

the following condition is satisfied,

é% expl(q¥ + % v¢2)/T] < VA (B-4)

Conversely, if this condition is not satisfied, there is no

equilibrium solution.




We next consider the case where the plasma motion is
sufficiently rapid and the process becomes adiabatic. 1In this

14
case we have

V-VT + PV-v =0 . (B-5)

N w
=

Substituting the relation (14) and (15) as well as the relation

T = P/n, we obtain

Fove3 9 Py, 9 dyy_  E 3,3 3 py, 8 1,y -

Use of Eq.(18) for n in (B-6) then yields

F 3(y, p)(5,. 3?2 39Xy =
r d3(r,z) [2p op 3 Sp] =0

or noting (12) we have

X = Xo) - xi(wp’® . (B-7)

where X, (¥) and x,(y) are arbitrary functions of ¢ . The
density n is determined by substitution of (B-7) into (18) as

1 3/s -
T . P - (B-8)

o]
]
N

Knowing no (¢) and T, (¢) in the absence of ¥ and v , we can
determine x,(¢y) which then determines 1y, (y) from (B-7) since

X vanishes in the absence of ¥ and v.




