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Abstract

A review is given to recent development of extensive studies
of nonlinear waves with purpose of showing methods of systematic
analysis of nonlinear phenomena has been now established on
the basis of new concept "soliton".

Firstly, characteristic properties of various kinds of
solitons are discussed with illustration of typical nonlinear
evolution equations. Brief discussions are also given to
basic mechanisms which ensure the remarkable stability and
individuality of solitons.

The reductive perturbation theory is a key method to reduce a
given nonlinear system to a soliton system. Introductory
survey is presented for an example of ionic mode in plasmas,
although the.method can be applied to any dispersive medium.

Central subject of the present review is the analytical
methods of solving nonlinear evolution equations. The inverse
method, the Biacklund transformation and the concervation laws
are discussed to emphasize that very firm analytical basis is
now available to disentangle the nonlinear problems.

Finally, a notion of "dressed" solitons is introduced on
basis of the higher‘order analysis of the reductive perturba-
tion theory. 1In spite of the fact that success is restricted
so far only for the one dimensional system, the achievement
of soliton physics encourages us to face dawn of nonlinear
physics with a confident expectation for forthcoming break

through in the field.
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§1. Introduction

Modern physics has been so far developed on the basis of
recognition of "linear" characteristics of the natural phenomena.
Were confronted with a complicated dynamical system, we are
accustomed to look for fundamental modes by decomposing the
system into a part composed of freely moving components and
an interaction among themselves. Putting faith in that this
decomposition has physical meaning, we then investigate effects
of the interaction among various modes as perturbation. 1In
many fields of physics, however, we have been bewildered by
the fact that this perturbation approach often meets serious
difficulties such as divergent results of each order of
perturbation and the lack of convergence of the perturbétion
series.

In nature, the success of a linearized thebry is rather
exceptional and in most cases the nonlinearity plays an
essential role. Analysis of the dynamical behavior of
nonlinear system is certainly one of the hardest problems.
While most physicists admit the importance of the study of
nonlinear system, the lack of a guiding principle, such as a
superposition principle in the linear theory, have prevented
us from developing a systematic research in the full variety
of nonlinear phenomena. During the last decade, extensive
studies on nonlinear waves in dispersive media such as plasmas
have clarified remarkable properties of solitary wave. Thus,
we expect hopefully that the key concept "soliton" may open

the door for the establishment of nonlinear physics.




In the present paper, the status quo of the theory of
nonlinear waves in dispersive media is summarized. Recently,
the soliton turns out to be one of the most popular concept
in theoretical and experimental physics and the study of
soliton covers almost every field of physics. Therefore, it
will be appropriate to start our discussion from the brief
survey of history. Details of the concepts and methods will
be found in the succeeding sections.

The soliton is very new concept, but we can trace back
its seed to the old papers on hydrodynamics. According to
a review paper by Scott, Chu and Mclaughlinl), a story of the
first discovery of solitary wave in a canal is described
vividly by Scott-Russel. He observed a well-defined heap
of water propagates along the canal without change of the
form or diminution of the speed. It was an event of August,
1834. Pioneer works to give theoretical interpretation of
the observation had been initiated by Boussinesq (1872) and
by Korgeweg and de Vries (1895) at the end of the last century.
In order to describe solitary waves in shallow water, they
presented nonlinear partial differential equations which are
now called by their names.

A real breakthough, however, came from the computer
study of the Korteweg-de Vries equation carried out by Zabusky
and Kruskalz) in 1965. They found that the individual
identity of steady solitary wave solution of the Korteweg-de
Vries equation is preserved notwithstanding of their mutual

interactions waves, and hence they proposed to call it "soliton"



They found also that an arbitrary shaped large amplitude wave
is decomposed into a sequence of many solitons in the course

of propagation. These discoveries immediately gave a clue to
the famous Fermi-Pasta-Ulam problem in statistical mechanics.
Fermi, Pasta and Ulam conjectured that the thermal equilibrium
in solid is accomplished by the anharmonic interactions between
atoms. Against their conjecture, they observed a recurrence
phenomena in the one-dimensional nonlinear lattice. This
recurrence phenomena now can be attributed to the particle-
like properties of soliton. We will describe characteristic
mechanisms to ensure the remarkable stability and individuality
of various kinds of solitons in section 2.

Hope for development of systematic researches in nonlinear
physics has been reinforced by the important fact that nonlinear
evolution equations for the soliton systems are universal in
many fields of physics. This has been recognized firstly
by Gardner and Morikawa3), in 1960, who showed that the
hydromagnetic wave propagating with finite amplitude in
perpendicular to the magnetic field is also described by the
Korteweg-de Vries equation. Observing the close relationship
between the linear dispersion relation and the structure of
Gardner-Morikawa's transformation, Washimi and Taniuti4) derived
the Korteweg-de Vries equation for the ion-acoustic wave in
cold plasma. The reductive perturbation theory developed by

5)

Taniuti and his collaborators provides a systematic method
to reduce relevant nonlinear evolution equations from the set
of fundamental equations for a given physical system. 1In

section 3, we present an instructive description of the




reductive perturbation theory for the weakly dispersive
system and for the strongly dispersive system. We will discuss
the results of our recent analysis of the contribution of
higher order terms of the reductive perturbation theory in
section 5, where we introduce a notion of "dressed” soliton.

Finally, the dream of establishing nonlinear physics
appears to be realized through vital efforts for search of
analytic methods to solve the nonlinear evolution equations
exactly. 1In 1971, Lamb rediscovered the Backlund transforma-
tion and obtained soliton solutions for the sine-Gordon |
equations). A little earlier than Lamb's work, Gardner,
Greene, Kruskal and Miura have developed a completely new
method, called as the inverse scattering method, for solving
the Korteweg-de Vries equation7). For nearly five years after
their invention, the inverse scattering method has been
believed to be effective only for the Korteweg-de Vries
equation. Then, suddenly around 1972, people realized the
inverse scattering method is not a fluke at.all. Now we have
more than 20 solvable soliton system. It should be emphasized
that inverse scattering method has been a unique method whereby
we can solve the initial value problem of nonlinear evolution
equations. Furthermore, formalism of the method yields very
naturally the proofs of the existence of an infinite number
of conservation laws and complete infegrability of the systems.
We discuss in some details on these crucial aspects of the
methods in section 4.

To concludé this introduction, we should remark also

that the concept of soliton and new analytic methods are



8)

found to be applicable to discrete systems such as lattice
system and particle system as well as continuous system. The
interdisciplinary researches among physicists, mathematicians

and engineers with vigorous curiosity have accelerated rapid

development of the theory of soliton.

§2. Soliton
Let us start with giving a physical definition of soliton.
Soliton is a nonlinear wave which possesses the following two

properties: The first of them is

(1) A localized wave propagates without changing
its properties such as the shape and the velocity,

etc.

The typical example is a pulse-like wave shown in Fig.l. The

celebrated Korteweg-de Vries equation;

Fig.

2 u-6u 2oy o+ —3; u=0 (2.1)
at ax ax :

has this shape of soliton. The Boussinesq equation

32 3?2 N 32
T U TR VT e U T W S0 (2.2)

and the Modified Korteweg-de Vries equation
2 4+ 6u? JRI —E; u=20 (2.3)
ot ox 9x )

also bear this type of soliton. Into the category of localized

waves, we may include a wave of which shape is given by Fig

integrating a pulse-like wave as shown in Fig.2;

1

2



x
d(x, t) = f u(y,t)dy (2.4)

Sometimes, we call this shape of soliton "kink". For instance,

the sine-Gordon equation;

2 2
3%7 ¢ - 5%7 ¢ + sinp =0 ’ (2.5)

Oor an equivalent equation expressed in a characteristic frame:

32 S
atox ¢ * sing

]
o

(2.6)

has this shape of soliton.

In the above examples, the wave fields u(x,t) and ¢(x,t)
are real. 1In the case of complex field, envelqp of the wave
mightvbe localized. We call this localized envelop of wave
"envelop soliton". An example is the nonlinear Schrédinger
equation;

2
igE Y +Pyrv+aluly =o . (2.7)

In particular, a soliton for PQ > 0 is called "bright" soliton
(Fig.3(a)) and a soliton for Pq < 0 is called "dark" soliton
(Fig.3(b)). The words "bright" and "dark" come from an applica-

tion of the nonlinear Schrédinger equation to nonlinear optics

where |y|? stands for the intensity of electric fie1a?) Fig.3(a) Fig.3(b)

The second property to be hold by soliton is

(2) Localized waves propagate without losing their
individuality and they are stable in the processes

of mutual collisions.



That is to say, soliton behaves as if it is a particle. 1In
"Fig.4, we illustrate an example of collision of two solitons.
Each soliton conserves its identity before and after the Fig. 4
collision although solitons interact strongly during collision.
For the soliton systems described by egs.(2.1) ~ (2.7), we can
prove that collisions among N solitons are described as
superpositions of successive binary collitions between solitons.
Mathematically, we can give a rigorous definition of soliton
system as a completely integrable system. In the language of
statistical mechanics, the soliton system is non-ergodic.
Corresponding to the situation that wave fields have infinite
degree of freedom, the soliton system has such a remarkable
property that an infinite number of conservation laws holds
for the soliton system. Recently, we have shown that these
conservation laws are closely related to the symmetries of
the system:.m)
Then, we turn to discuss what mechanisms are effective to
sustain the shape of solitons and to insure their stability:
(a) The competitions of nonlinearity and dispersion sustain
the stable wave forms.
Most of the solitons belong to this category. For instance,
in the Korteweg-de Vries equation (eq.(2.1)), the second term
is a nonlinear term and the third term represents dispersion
effect. Nonlinear effect acts to steepen the wave, while
dispersion effect make the wave to spread. Balance of these
opposing effects secures the stable wave forms.
(b) Combined effect of nonlinear terms alone may keep stable

wave forms.




An example is so-called three wave interaction process described

by the following equations%l)

' * .
SE VetV v = -Ba vi ¥, (2.8a)
) + 9 _ 2.8b
3 W1 Vg, 3% V1 = =B1 Yy VY2 ' (2.8b)
2 Vo + v L V2 *
ot gz 9x = =B, Yo lpl . (2.8c)

Here wj(j=0, 1,2) are complex amplitude of waves, which satisfy
the resonance conditions W) = Wy + w, and k; =k, + k, .
vgj(j=0, 1, 2) are group velocities and Bj(j=0, 1, 2) are
coupling constants with positive sign. In this case, a
variation due to translation of a wave balances with a varia-
tion due to interaction between two other waves: This set of
equations can be regarded to be an extension of Volterra
equation which describes population competitions among species.
Direct analogy holds between the process described by the set

of equations (2.8a ~ c¢) and the process of self-induced
transparency studied in the nonlinear optics%z) We illustrate
the collision process between two triple solitary pulses in
Fig.5, in which the amplitudes wi are taken to be rea1}3) Fig. 5
(c) The third mechanism is. a topological stability.

This is now getting popularity in physics of elementary
particles}4) As a méchanical analogue of the topological
stability, we may present the sine-Gordon equation which

describes wave motions in a series of pendulums connected by

linear springs (Fig.6). One twist of string (say, clockwise

twist) corresponds to a kink. : Fig. 6




It is to be noticed certainly that the above classifica-

tion is not strict and we have no intention to exclude other

possibilities.

§3. Reductive Perturbation Theory

Nonlinear behaviours of dynamical systems are modeled by
such nonlinear evolution equations as listed in the previous
section. Various approaches have been proposed to reduce the nonlinear
evolution equations from a set of fundamental equations
describing dynamical behaviour of the given physical systems.
Here, we present the reductive perturbation theory developed
by Taniuti and his collaborators during the years of 1968-1974.
Development of the theory has been inspired by the work of
Gardner and Morikawa. Extending the concept of the far field
of the wave equation, however, Taniuti and his collaborators
have formulated the reductive perturbation theory as a method
to reduce a general hyperbolic system to a single solvable
nonlinear equation describing a far field of the system.

For the purpose of introduction to the reductive perturba-
tion theory, we will recapitulate the approach of Gardner and
Morikawa by applying their method to derivation of the Korteweg-
de Vries equation.for ion-acoustic wave in plasma. For a
collisionless plasma composed by cold ions and warm electrons,
the basic set of equations may be expressed as (in a dimension-

less form);

? ) _
-§En +§§ (n\J) =0 ’ (3-la)
%UJ,H%I,:_%‘;,, (3.1b)

- 10 -



%7 y = ne - n ’ (3.1c)
n, = exp () ’ (3.14)

where n = ﬁi/no, ne=ﬁe/no, u=i.'1(l<Te/M)_1/2 and ¢ = $(|<'I'e/e)-1
are the dimensionless ion number density, electron number
density, ion velocity and electro-static potential, respectively.
Dimensionless space-time variables (x,t) are measured by the
Debye distance (KTe/41re2no)1/2 and the ion plasma frequency
(41re2nn/M)l/2 . We impose the boundary condition;

n-+1, v >0, u +> ug as |x| » » . (3.2)
Gardner and Morikawa looked for an approximate time dependent
behaviour of nonlinear waves at large t under the conditions
that (a) it should include the nonlinear statioﬁary solution
and (b) it should exhibit the similar asymptotic evolution as
the linearized field does.

Thus, firstly let us look for the stationary solution of
the set of eéuations (3.1a) ~ (3.1d). Under the boundary

condition (3.2), it is straight forward to obtain
P _ 2 -1/2
3%z ¥ T exp(yp) - (1 - 3.2 Y) . (3.3)

We consider y is small but finite (say, ¥ ~ 0(e), € is a
small parameter) and set

£ = e{/z x (3.4a)

It

u l + ¢ a . (3.4b)

Up to the order of ¢?, eq.(3.3) yields

- 11 -



\ v
—732 p=-92 +2ad, (3.5)
where

v = e . (3.6)

Under the boundary condition (3.2), eq.(3.5) is integrated to
give

¥ = Yo sech? (/16"— £ ), (3.7)

representing a localized solitary wave.

Secondaly, we turn to examine asymptotic behavior of the
linearized field at large t. Linearization of the system
(3.1a ~ 1d) yields

32 32 _ % = (3.8)
stz ¥ T a2 ¥ 3e2axZ ¥ o -

The solution of eq.(3.8) with the initial condition

v(x, t = 0) =§%1p(x, t=0) =0 (3.9)
and the boundary condition
= Yo ’ t>0
y(0, t) (3.10)
=0 t <0

is obtained as

1

Vo= Yo 307 J ds s ! exp{ts[l-a(l + Sz)'l/Z]}

’ (3.11)
of which asymptotic evolution at large t is given as

Vv ~ J Ai(o)da (3.12)
B

where

- 12 -



a = f , (3.13a)

B = % (x -ty (3.13b)
X 1 [" 1 .,

Ai(a) = £ | cos(3 A* +ar)ar . (3.13c)

0

Gardner and Morikawa suggest us to look for an approximate
equation which describes evolution of the linear asymptotic
solution (3.12) into the nonlinear stationary solution (3.7).
Upon observing at the expressions of eqgs. (3.4a) and
(3.13b), we notice that the condition (a) and (b) are satisfied

if we set

£ = P x-v (3.14a)

o= /% ¢ i ' (3.14b)

With these re-scaling of the independent variables, the basic

equations (3.la ~ d) are transformed as follows.

EBT n - 3E n + 3E (nu) = 0 , (3.15a)
9 9 ] = _ 9

e-a—-{u—sgu+u§-£-u- ag\(l, (3.15b)
32

€§E7 Y =exp(Y) - n . (3.15¢)

Substituting power series expansions of n, u and ¢ ,

n=1+¢en) 422 | (3.16a)
u=c¢ul) 4 g2 4@ 4 .. (3.16b)
v= ep'D) 4 g2yt 4 ... (3.16c)

- 13 -



into egs.(3.15a ~ c¢), we can establish relationships among

the first order quantities as

(1y _ (1) _ (1) _ (1) (3.17)

at the level of the first order expansions of egs.(3.15a ~ c).
Their explicit (£,1) dependence, however, is not determined
at this level. Going up to the second order expansions of
egs. (3.15 ~ c¢), we obtain the Korteweg-de Vries equation for

the first order potential

(1) , 1 9° (1) 4 @ 2 AR R (3.18)
- .

3 V't ggEr
as the compativility condition among the second order components
of egs.(3.15a ~ c).

Taniuti and WeilS) have established the reductive perturba-

tion method for the nonlinear propagation of long waves by

applying the Gardner-Morikawa transformation,

£ = e2(x - At) , (3.19a)

ro= et , (3.19b)
!

a = 97 , (3.19¢)

to a set of equations for a vector U with n-components,

3 ) S P g .2 B 3\ 1ure
——U+A(U)§§U + {1 (Ha(U)§E + K (0)32)} U=0, (p>2) (3.20)

ot 8=1a=1 a
B

and Ka are n X n matrices, being functions of U.

B

where A, H
o
Expanding these quantities around a constant solution U, in

a small parameter ¢ , they have reduced eq.(3.20) to

- 14 -




3 (1) 3P (1) (1) 3 (1)
Y + U— ¥ + 0 ¥ = ¥ =0 , (3.21)
it 5P 13
where w(l) is defined b
y
with R the right eigenvector of Ay , i.e.,
(Ay - X)J)R=0 . , (3.23)

The coefficients y and a are given by the relations

(L K¢ R)/(L*R) ’ (3.24a)

=
]

Q
]

L(R-Vu Ag)R/(L*R), (3.24Db)

where L stands for the left eigen vector of A, and

s ] o
Ko = Z1I (=) +
0 (=2 HBo KBO)

. (3.25)
It is straightforward to see Ao and p are the phase velocity
and the dispersion (or dissipation) coefficient of the linear

dispersion- relation
w= Aok + u iPTL kP 4 o(x2P71) (3.26)

reduced from eq. (3.20).

The crucial assumption in the above reduction is that
there exists at least one real and non-degenerate eigenvalue
of Ay, which is denoted by Ay . Furthermore, in the practical
application of the method, we encounter exceptional cases
in which either

a=0, i.e., Vqu-R =0 , (3.27a)

- 15 -



or

uw=0 , i.e., L*Ky*R=0 , (3.27b)

The former case occurs for the Alfvén wave, and the latter is
a case of the magneto-acoustic wave. The necessary modifica-
tions for these exceptional cases have been accomplished by
Kakutani and his collaborators%G)
Now, turning to our interest to the case of strongly
dispersive waves, we describe briefly a generalization of the
method to a wide class of nonlinear wave systems. Taniuti

17)

and Yajima considered a system of equations,

d 3 _
sz U+ A(U) 5= U+ B(U) =0 (3.28)

Here, U is again a column vector with n components u;, uz, °*--
un, and A an n x n matrix and B a column vector. We assume

eg.(3.28) has a constant state solution U,, which satisfies

Then, eq.(3.28) linearized about U, takes the form

%U”)+Mm)%uu)+v§mhw”)=o,~ (3.30)

(1)

which admits a plane wave solution U ~ expli(kx - wt)]

subject to the dispersion relation;
det (+xi(wI - k A(U,)) + VuB(U)o) =0 ’ (3.31)

where I is the unit matrix, the (i,tj) element of VuB(U)o is

given as (3Bi/auj) =@Q. In terms of a small parameter ¢ ,

U=0 0
we introduce slow variables

- 16 -



E=¢e(x - At) , (3.32a)
T = g%t . (3.32b)

and assume U can be expanded about U, as follows;

U=Uy + 1 I & v, (¥ (g, mexplit (kx-0t)] . (3.33)
f=—0 =]

Substituting egs.(3.32a ~ b) and (3.33) into the original
equation (3.28), we obtain a set of equations corresponding
to the each order of powers of € and the %-th harmonic
component. 1In the first order of ¢ , the dispersion relation
(3.31) assures that Uii) = ¢(l) R with the right eigenvector
R given by

[+i(wI - k A(U,)) + VB IR =10 (3. 34)

and Uz(l) = 0 for |2] 22. 1In the second order of € , the

£ = 1 component yields a condition

aw (k)

A= Sk (3.35)
to deal with nontrivial case ani)/BE # 0. The & = 2
component and the 2 = 0 component of the second order equation

determines the second order beat wave U2 (2) and UO(Z). Finally,

at the third order of € , the £ =1 component gives rise to

the nonlinear Schrddinger equation

(1) 92 (1)

+pa£2‘p l)

i _a_a? ) + g |1p(1)|2 w( =0 . (3.36)

It is not so difficult to show p = (1/2)52w/dk?2. Again the
second term describes dispersion effect and the third term

represents nonlinear effects.

- 17 -



.In discussing nonlinear wave phenomena in collisionless
plasma, it is very crucial to take into account contributions
of the particle-wave resonant interactions. Sugihara and
Taniutila) have examined structure of the resonant far fields
of the Vlasov equation. Ichikawa and his collaboratorslg)
have examined contributions of the particle-wave-wave resonant
interaction, while effects‘of the resonant particles to the
ion-acoustic solitary waves has been analyzed in some details

by TaniutiZ?’

§4. Analytical Methods of Solving Nonlinear Evolution Equations
In the previous section, we have discussed a systematic
method to derive a nonlinear evolution equation from a basic
set of equations for a given physical system. Concerned with
thus derived nonlinear evolution equations, recent investiga-
tions have clarified that there are a number of nonlinear
evolution equations which share the following common properties;
1) The equations can be solved exactly by the "inverse
scattering method" and yield N-soliton solutions.
2) The equations have the "Bdcklund transformations" which
transform equations to themselves.
3) The equations have an infinite number of "conservation
laws".
We shall explain each statement and show these properties are
closely related.
4.1). The inverse scattering method
Fundamental principle of the inverse scattering method

may be summarized as follows.




1) Introduce an eigenvalue problem whose potential is the
solution U(x,t) of a nonlinear evolution equation, which
we want to solve. When we choose an operator of the eigen-
value problem properly, the eigenvalue remains to be time-
invériant while u(x,t) evoives according to the nonlinear
evolution equation.

2) Solving the inverse scattering problem (namely, determining
a potential from scattering data) for the eigenvalue problem
introduced above, we can reconstruct a sought function

u(x,t) from the time-dependent scattering data.

Initial value problem of a nonlinear evolution equation

-5% u = K[u] : (4.1)

is solved by the inverse scattering method as follows;

a) determine scattering data at t=0 from the initial'value
u(x,0),

b) evaluate a time dependence of the scattering data and
determine scattering data at t=t,

c) reconstruct a potential u(x,t) from the scattering data
at t=t.

If we regard scattering data as Fourier components, the

above procedure may be interpreted as an extention of Fourier

transformation to the nonlinear case. |
To be specific, let us consider the RKorteweg-de Vries

equation;

3
u+§§-,u=o ) (4.2)



Associated with eq. (4.2), introduce the linear eigenvalue

problem
Ly=xv¢ , (4.3a)
with
2
L=_§%r+u(x,t) , - e<x < + o . (4.3b)

We impose the boundary condition, u(x,t) > 0 as [x| > .

Some lengthy calculation yields

g AVt ax Wax Qv @ =0 (4.4)
where
_ 9 53 )
Q = 3E Yy + %3 Y - 3(u + A) % V. (4.5)

I1f ¢ vanishes sufficiently fast as |x| - «» , the second term
of eq. (4.4) vanishes on integration over the interval (=o0,) .
Thus, we can prove the important result 23A/9t = 0. Hence,

we can integrate eq.(4.4) twice to yield

53? V o+ 5%; Yy - 3(u + A)Tax Y = C(t) + D(t)wjxlb’zdx , (4.6)
where C and D are integration constants.

Now, we shall find out the asymptotic behavior of P(x,t)
in regions where u(x,t) vanishes, that is, at |x| > = . For
a discrete eigenvalue An=-K; (Kn is real, n=1, 2, -°* N),
it is easy to show C(t)=D(t)=0 because of the boundary condi-
tion and the normalization condition oftpn. Then, eq.(4.6)

gives

b, (x,t) = C, (t)exp(k x) , X > -o (4.7)

_20_




where

= - 3
cn(t) = cn(O)exp( 4Kn t) . (4.8)

For the continuous eigenvalue A = k2 (k is real), the asymptotic
form of Y (x, t) is given as follows when, in the case that

the incident wave comes from the left,

]

P(x, t) a(k, t)exp(i k x) , X >

(4.9)

exp(i k x) + b(k, t)exp(-i k X), X > -,

where a(k,t) and b(k,t) are the transmission and reflection
coefficient, respectively. Substitution of eq.(4.9) into

eq.(4.6) yields C(t)=-4ik?, D(t)=0, and

a(k, t) = a(k, 0) | " (4.10a)

b(k, t) b(k, 0)exp(-8 i k3t) . ’ (4.10b)

We call the aggregate of quantities {Kn, Cpr h=l, 2, *°-°
N; a(k), b(k), k real} the scattering data. The potential
u(x,t) can be reconstructed from the scattering data at t=t

(the inverse scattering problem !) as
ulx, t) =2 & g (x, x (4.11)
r dx [ 4 [ 4 hd

where the function K(x,x) is a solution of the Gelfand-Levitan

equation
X
R(x+y)+K(x,y)+J R(y+z)K(x,z)dz=0, x > ¥, (4.12)
with -
1 [*
R(x+y) = 5;} b(k,t)exp(-i k (x+y))dk
+ cnz(t)exp(K (x+y)) . (4.13)
n=1 n :

- 21 -



The Gelfand-Levitan equation is a linear integral equation,
and can be solved easily to yield N-soliton solution in the

reflectionless case b(k) = 0?1)

22) showed that the nonlinear

In 1972, Zakharov and Shabat
Schrddinger equation (2.7) can be solved by the inverse
scattering method with introduction of the eigenvalue problem
of 2 x 2 Dirac operator L. Subsequently, the modified
Korteweg-de Vries equation (2.3) was shown to be solvable in
a similar fashion?3)

Then, one might ask, "For a given nonlinear evolution
equation, what kind of the eigenvalue problem should be
associated ? ". For the moment, we do not have any definite
answer for this question. Conversely, Ablowitz, Kaup, Newell
and Segur have examined for a given eigenvalue problem what
kind of nonlinear evolution equations will be included.

4)

Following their approach2 , we consider the following

eigenvalue problem

a—ax Yy - n ¥, q(x, t)v: ' (4.14a)

33; Yo ¥ n Y2 = r(x, B)0; . (4.14b)

and specify time dependence of the eigenfunction y; and ¥

as follows;

2 91 = Alx,t,mM¥y + Blx, £, Y2 (4.15a)
2 yr = ClutmMyy - AlX, £, MYz - (4.15b)

The requirement of time independence of the eigenvalue n yields

_22_



% A=qc-1rB , (4.16a)
3 _ 0
% B - 27B = —B_E g - 2Aq ’ (4.16Db)
9 _ 0
*5; C+ 27C = a—t- r + 2Ar. (4.16c¢)

The set of equations (4.16a - c) gives rise to various nonlinear
evolution equations for propér choice of A, B and C. According
to this formalism, the nonlinear evolution equations listed
in the second section are classfied in the following manner;
a) r=constant; the Korteweg~de Vries equation, (2.1)
b) r=-q; the modified Korteweg-de Vries equation, (2.3),
the sine-Gordon equation (2.6),
Cc) r=-q*; the nonlinear Schrodinger equation, (2.7).

More recently, the inverse scattering method are extended
to cover wider classes of nonlinear evolution equations, such
as. the Boussinesq equation, (2.2), the three wave interaction
equation, (2.8) etc. Also, it has been shown that the inverse
scattering method works even in the case of periodic boundary
conditidn?s)

4.2). The Backlund transformation

The Backlund transformation originates from the transforma-
tion theory in the differential geometry. 1In the theory of
partitial differential equation, the Backlund transformation
may be defined.as follows. A Bicklund transformation for
a partial differential equation of the second order in two
independent variables is a pair of the first order partial

differential equations that relate the dependnet variable
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satisfying the given equation to another dependent variable
which satisfies the same (or in general, another) partial
differential equation of the second order.

Again, let us take the Korteweg-de Vries equation as an
illustrative example. This time, we introduce a potential
function w(x,t), given by u=w_ where the suffix x stands for
the partial differentiation 3/9x. Similarly we denotes the
partial differentiation 3/9t by suffix t in the following.

The Korteweg-de Vries equation is expressed as

w - 6 wW._ W =0 . (4.17)

+ w
xt X XX XXXX

The Bicklund transformation for the Korteweg-de Vries equation
iS26)

' = - 2 .]; - 1y 2
we t Wiy 2n® + 5 (w - w ) ' (4.18a)
W w' - w2 w oW w' 2) - (w-w'))w _-w'
t + t 2( + X X + X ) ( )) XX xx) !
(4.18Db)

with the arbitrary constant n. In fact, it is readily shown
that if w is a solution, w' also satisfies the Korteweg-de
Vries equation. At first, we shall show that one-soliton
solution comes very naturally from the transformation. The
trivial solution of eq.(4.17) is w=u=0 (the "vacuum solution").
Substituting the vacuum solution into eg.(4.18) a -~ b), we

obtain two types of solutions, regular and irregular one,

w' -2n tan h (ng), u' = 2 n?sech?(nf) , (4.19)

w'*= -2n coth(ng), u'*=2n2cosech? (ng) , (4.20)

where &= x-4n2t + £, . The regular solution (4.19) and
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irregular solution (4.20) are called one-soliton solution and
one-antisoliton solution, respectively. This process can be
continued step by step.

More useful and important result from the Backlund
transformation is an algebraic recursion formula for construct-
ing a ladder of solutions. Let w,, w;, w, and Wi2 be the
solutions of the Korteweg-de Vries equation connected by the

Backlund transformation as follows

Mo e PV o= m2m? 2wy - wy)? (4.21a)
Wo,x t W, = w20t 4wy - wy)? (4.21b)
wl,x + le'x = -2n,%+ %(Wl -wi2)? , (4.21c)
Y P Wip,x T TIMM G s vt (4.210)

Eliminating the terms with x-derivative in egs. (4.21a. ~ 4d),
we obtain

2 2
= - ni — N2
Wi2 Wo 4 W1 - W . (4.22)

That is to say, the second-order solution W2 1s expressed in
terms of the original solution w, and the two first-order
solution w; and w, . Since the starting solution is not
specified, this relation gives a recursion formula for
constructing a ladder of solutions. For instance, if we

take wo the vacuum solution, w, ‘and w; one-soliton and one-
antisoliton solution, respectively, w;, becomes two soliton
solution. Eq.(4.22) is an example of nonlinear superposition

principle.



A striking property of the Backlund transformation is
26),27)

its close relation to the inverse scattering method.
Consider egs.(4.18a ~ b). We introduce a function defined by

w'-w= -2 /Y. (4.22)

Substitution of eq. (4.22) into egs.(4.18a ~ b) gives rise to

- b TUY =AY, A =- n? , (4.23a)
b= -ud o+ (u+ 4N Y +C Y
= - wxxx + 3(u + A) wx + Cv9y . (4.23b)

These are nothing but the fundamental equations of the inverse
scattering method, egs.(4.3a ~ b) and (4.6).
Let us study one more example. The Backlund transforma-

tion for the sine-Gordon equation (2.6) is

12+ D w-u) =asind@+uy (4.242)
32 - wru) =-LsinG-un, (4.24b)

with an arbitrary constant a. We introduce a function

defined by
I = tan (%(u +u")) (4.25)
and eliminate u' in egs.(4.24a ~ b). We get
_ _ 1 ,
T+ I =-aT+zw(l+T?), | (4.26a)
I, - I'. =271 cos u-=2(1L - '?)sin u (4.26b)
t X a 2a ! .
where
wo=ou + u, - (4.27)
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Defining

_lyztiy, - -as
r Iv, - 179, and a 4i A , (4.28)

we obtain coupled linear equations for y; and vy, ,

3 i .
7% V1t T Wit Ter exp(-iny, = A g, ,
(4.29a)
3 i .

- 3% V2t g Wi + TEr exp(iwyy = Ay, ,
V1M S+ Lexp(-iu)vamdy, + Lexp(-iu)y
EV1TAV2T WYy + Tevexp 253xY1 * gxexp 2

(4.29Db)

§%¢2= =AY, + %le' T%XGXP(iU)¢1=§%¢z - é%eXP(iu)wl .

These are the fundamental equations of the inverse scattering
method for the sine-Gordon equation?s) In general, the inverse
scattering method can be derived from the Backlund transforma-
tion by linearizing the equations with respect to auxiliary
functions which are introduced to relate a solution to the
other?7)

4.3). The conservation laws.

It has been known that the soliton system has an infinite

number of conservation laws,

[u] + g% Filul=0 , i 2, .- | (4.30)

[}
fan
-

)
3¢ D3

wehre Di[u] and Fi[u] are called conseved density and conserved
flux, respectively. For instance, the first three conserved

densities and fluxes of the Korteweg-de Vries equation are



D; = u F, = -3 u? +u
1 7 1 XX ’

_ 1 - - -1

D, = 5 ut F, = -2 u’” + u u > ux ’ (4.31)
- _ 3 . 2 _ 2 1 P

Fy=-35u +uwu =-20u, +3u U "% Y%

Here, we present a systematic method to derive an infinite
number of conservation laws from the formalism of the inverse
scattering method?7)’29) We start form the formalism developed
by Ablowitz et al. Using a function defined by T = ¥2/¥1,

egs. (4.15) and (4.16) are rewritten as

qr = :,_lﬁ [rq - (@M)? - q 5% (@ar/@d]1 (4.32a)

2 (qr) = 2
EE(qr) = 3% (A + BT) . (4.32b)

We notice eqg.(4.32b) is in the form of conservation laws.

Substitution of
qll'= I £, , (4.33)
n=1

into eq. (4.32a) yields a recursion formula for fn;
n-1 £

- g2
[(rq)6no - kil £ £k q((l)x] . (4.34)

N

fn+l

Therefore, when the given nonlinear evolution equation is
expressed in the formalism of Ablowitz et al. (namely, if
explicit forms of r, g, A and B are given), an infinite
sequence of the conservation laws are obtained in a simple way.
The existence of an infinite number of the conservation laws

in the soliton system implies that the system is an completely



integrable system. The proof of completely integrability of
soliton system has been given by several authors?o)

The above brief survey aimes to provide general impression
on the recent advancement of analytical methodé of solving
nonlinear evolution equations. Though the problem is one of
the hardest, the progress has been steadily accelerated since
the first ingenious discovery of the inverse scattering method
by Gardner, Greene, Kruskal and Miura. 1In particular, since
inter-relationships among the various methods of solving the
nonlinear evolution equations have been clearly understood,
we can expect studies of the nonlinear physics will be

developed in a systematic way on the firm mathematical ground.

§5. Dynamical Properties of Dressed Solitons

We have seen in the previous section that now very powerful
arms are available to deal with the nonlihear evolution equa-
tions such as the Korteweg-de Vries equation and the nonlinear
Schrédinger equation. These nonlinear evolution equations,
however, are nothing but approximate model equations for real
physical systems, derived in the lowest order expansion of
the reductive perturbation theory. So far we have discussed
the analysis of its lowest order, but nonlinear evolution
equation.v

Now, from the point of view of perturbation approaches,
we have undertaken investigation of the higher order contribu-
tions of the reductive perturbation expansion?l) Referring
back to the example of the nonlinear ion-acoustic wave in

collisionless plasma discussed in section 3, we ask how the



)

second order potential w(z behaves when the first order

(1)

potential ¥ is determined by the Korteweg-de Vries
equation Expanding the set of egs.(3.15a ~ c) into power
series of ¢, we have obtained the Korteweg-de Vries equation

for the first order potential in the second order expansions,

and then the second order quantities n(z) and u(z) are
expressed as
2
n(2) = W(Z) + % w(l) w(l) - 5%? w(l) , (5.1a)
(2) (2) _ 1 3% (1)
u = ¥ 5 W P . (5.1b)

These relationships correspond to eq.(3.17) for the first

order quantities. In order to determine behavior of the second

(2), we have to proceed up to the third

order potential ¢
order terms. . Then, as the compatibility condition among

three equations in the third order, we obtain an equation

(2)

for the second order potential as
9 (2) 1 3° (2) 9 (1) (2), _ (1)
¥ 3 5E3 v + 3g(w ') = 8@ ) »  (5.2)
where
(1), _ _ 3 8% () ,1 (1 2 (1,5 3
S(‘P ) = 8 ags lp + 2 w _3_5—5— w + g "a—g(ag )2 .
(5.3)

Thus, the Korteweg-de Vries equatibn (3.18) and the linear
inhomogeneous equation (5.2) with (5.3) describes a nonlinear
ion acoustic wave propagation in the second order approximation.
Differing from the ordinary perturbation expansion, we observe
that the reductive perturbation theory provides the lowest

order equation in which essential nonlinear effect is accounted
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for completely, while the second order equation describes
interaction effects between the fundamental nonlinear wave

and the higher order dispersion effects.

(1) (2)

Firstly, seeking a type of solutions v (n) and vy (n)
with argument

M o= £ - AT , (5.4)
we have obtained a steady one soliton solution of the coupled

set of eqgs.(3.17) and (5.2) with (5.3) as follows,

v ) = 3% sech?(on) (5.5a)
v Py = é A?sech?(Dn) {2Dn tanh (D7)
- 8 + 7 sech?(Dn)} : (5.5b)
with
D= (/2)'/% . : (5.6)

The perturbed potential calculated up to the second order
v =y my + 4@ (5.7)

can be regarded as the dressed soliton, of which velocity 1

is given by the amplitude A of the ion accoustic potential

perturbation as

=1 1 .2
A= 3 A+ 13 A . (5.8)

We have observed numerically that the steady state clouds (5.5b)

moves stably with the Korteweg-de Vries soliton core (5.5a).
Secondly, the collision processes of the dressed solitons

attract our special interests?Z) As a solution of the Korteweg-

de Vries equation (3.17), we now take the well-known two-soliton

solution,
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§6. Concluding Remarks

As we discussed above, the study of nonlinear waves stemmed
from the observation of solitary wave on a canal in the middle
of the 19th century has made a remarkable stride in the last
decade. Intense researches on nonlinear waves occuring in
the various field of physics has provided us new physical
concepts such as solitons and envelop solitons and also very
powerful mathematical tools such as the reductive perturbation
theory, the inverse scattering method, the Backlund transforma-
tion. We devoted a large part of the present paper to the
discussion on nonlinear evolution equations in the following
reasons. For a long time,"linear" view point of physics based
on Fourier analysis even govern our way of thihking. The
buds of new physical picture "soliton" originated from
numerical analysis of the Korteweg—de Vries equation has been
secured very firmly by advancement of the mathematical methods.
Development of the analytical method of solving full variety
of the nonlinear evolution equations has conversely established
various kinds of solutions as discussed in section 2. Enduring
studies on the nonlinear evolution equation will shed bright
light on the fields of nonlinear physics.

So far, the theories of soliton have been mainly dialing
with one-dimensional and classical nonlinear waves. Multi-
dimensional soliton and its quantum theory are no doubt
challenging subjects. It is almost certain that further studies
will introduce modifications and extensions of the concepts
and the methods now in our hands. However, it is to be noted

that even one-dimensional and classical theory of soliton has
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clarified lots of phenomena which could not be handled within
the frame work of linearized theory.

As an illustration of slight extension of the approach,
we have discussed new notion of dressed soliton and dressed
envelop soliton on the basis of the higher order analysis of
the reductive perturbation theory. Systematic studies of
interaction effects among the nonlinear waves and between
the particles and the nonlinear waves will help us to
construct physical soliton picture in the real world.

Very recently, there has been a tremendous number of
papers entitled "soliton" in physics of elementary particles
and field theory§4) Concerned subjects are quantization of
soliton, vortex solution, monopole solution, topological quantum
number, extended system, quark confinement, spontaneous
symmetry breakdown, etc. Each notion has its own history and
motivation. Some of them are very close to the concept of
soliton and some are not. All of them, however, are based
on the full recognition that nature is essentially nonlinear.

The authors believe the study of soliton is the first
successful attempt to establish the systematic understanding
of the truth of nonlinear phenomena. Then, as a concluding
remark of the present paper, it will not be an overcharge to
say; "we are facing the dawn of nonlinear physics."

We feel it a great honor to dedicate this paper to

Professor Ta-You Wu in celebration of his seventieth birthday.
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Caption of Figures

Fig. 1 A Soliton

Fig. 2 A kink

Fig. 3a A bright envelop soliton for the case of pg >0

Fig. 3b A dark envelop soliton for the case of Pg <0

Fig. 4 Collision process of two solitons

Fig. 5
Fig. 6
Fig. 7

Collision of two triple solitary pulses Ai(i=l,2) and
Yzl(i=l,2) represent the velocity and the width of

each triple solitary pulse, respectively

Mechanical analogue of the sine-Gordon equation.

Angle Y measure a twist in (z,y) plane.

Temporal evolution of shape of two dressed solitons
in collision process. The thick lines represent the
dressed solitons y , the thin lines the Korteweg-de
Vries®” soliton core w(l), the broken lines the

clouds w(Z)' respectively.
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Errata of the manuscript of Ichikawa and Wadati,

"Solitons in Plasma and Other Dispetsive Media."
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