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Abstract

The DC current induced by a Travelling Wave is calculated
on the basis of the assumption that the distribution function
of electrons in the collisionless limit should be determined
by a condition derived from the nature of the collision
operator, as in the case of the calculation of the neoclassical
transport in a torus. The resultant net current is found to
have the same parameter dependence as the one derived in a
previous analysis, in which we assumed the initial distribution
of electrons to be uniform and isotropic Maxwellian. The
numerical coefficient is found, however, to be a little
different from the previous one. The importance of the
accurate matching of the distribution function of untrapped
particles to the Maxwellian one for large velocity is

demonstrated.



§1. Introduction

Travelling wave is a promising means to drive DC current
necessary for the steady operation of a Tokamak fusion reactor.
In a previous paperl), one of the authors calculated the

DC current induced in a magnetized plasma by a travelling
wave. There it was assumed that the electrons are perfectly
collisionless and the initial velocity distribution function
of electrons is a uniform, isotropic Maxwellian. Since,
however, these assumptions seem a little artificial, it is
desirable to set a more natural, physical basis for the
calculation.

In a well-known paper on the damping of a plasma wavez),
Zakharov and Karpman showed that, in a plasma with very rare
collisions, the collisionless limit of the distribution func-
tion can be determined by an analysis, in which the collision
term plays an essential role. This idea forms also the bases
of the analyses on the neoclassical transport in tokamaks§’4)
Accordingly, the same idea should present us a sound physical
basis for the calculation of the DC current induced by a
travelling wave.

In this paper, we shall calculate the DC current by the
use of the idea stated above. The result is found to have the
same parameter-dependence as that derived in the previous
paperl), but the numerical coefficient is somewhat different.

In the course of calculation, it was found that the distribution
function of untrapped particles in our analysis must be
matched to the Maxwellian one at a large velocity more accurately

than done in the previous papers%’3) The implication of the
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same kind of modification for other problems will be discussed

in separate papers.

§2. Model

The model is almost the same as the one in the previous
paperl). We consider a plasma in a steady magnetic field,
which is so strong that in the absence of collisions each
electron is completely frozen to a certain magnetic line of
force. The travelling wave provides a modification of the
magnetic feild. In the laboratory system the total magnetic
field is of the form: By{l+ecos(kz - wt)}.

In the followings, we shall make the analysis in the wave

frame, in which the magnetic field seems to be static:
B(z) = By {1 - € coskz} . (2.1)

The motion of an electron is adiabatic, so that the magnetic

moment
2
nmvy

u =.m (2.2)

is a constant of motion, where ?; is the velocity perpendicular
to the z axis and m is the electron mass. If collisions are
neglected, the equation of motion for an electron is given by

dv

z - -, 2 = - 4 ;
m3F = W B(z) K By €k sin kz . (2.3)

This equation has the energy integral

2

2 + ueBy(l - cos kz) = E > 0 . (2.4)
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It is convenient to introduce new variables & , k¥ and ©

in place of v, and v, by

g = 2uBo/(mV.§, )

k?= E/(2euBo) (2.5)
o = sign (VZ) '
where Vo = (2Te/m)1/2 is the electron thermal velocity.

In terms of these new variables, v, is expressed as

2 EE 1/2

> (2.6)

= 1/2 /2— 2 .
v, = E Vil E(k® - sin

It is easily seen that «k > 1 for an electron trapped in the
wave and k < 1 for an untrapped electron. Note that all the
new variable £, k and 0 are constant of motion in the absence

of collisions.

§2. Kinetic Equation and Its Solution

The kinetic equation for electrons in a steady state is

given by
afe U OB afe
V2 3z ~ m 3z v, = Colfg) v 3.1

where fe(?, z) is the distribution function of electrons and
Céfe)represents effects of collisions. If we assume the
problem to be axisymmetric and use &, k, 0 as the new indepen-
dent variables in place of 3, eq. (3.1) is reduced to

of
e _
Vz(gIKIOI z) 3_2— = Ce(fe) . (3.2)

The collision term contains contributions of electron-electron

collisions and electron-ion collisions. In dealing with



collisions with ions,we take the distribution function of
ions to be Maxwellian in the laboratory frame. As for the
electron-electron collisions, we linearize the collision

term by assuming that deviations from the Maxwellian
distribution are small and important only in small region of
velocities of resonant particles. We further assume that the
distribution function is most sensitive to changes in the
longitudinal velocity, so that in the first approximation we
can neglect all the other derivatives. Then the collision

term assumes the form3)

2v
Co(£) = v egT (k2 - sin? ]—‘25)‘/ ﬁz {A(V) [ (k2 - sin? k—zz-)’/2
afe .
X(SET + 2€£fe) + 0¢2€£(vph/VT)feJ} , (3.3)

where vph=w/k is the phase velocity of the 'wave, v=2ﬂAnoe“/(m2v;)
is a measure of -the collision frequency (A being the Coulomb
logarithm) and the coefficient A(§5 is given by the following

expression:
2

3 _ 1 dn(s), "¢ Ve n(s)
A(v) = {1+(1 55)”(5) + s } a t e
where n(s) = 2 fs et Ytdt , W= (v, v y V. + v and
mo, Xy 'z ph)

- 2 2
s = w /vT .

We solve eq.(3.2) by assuming that v is small and writing
f = fo + f1 + e ’ (3.4)

where fo is the distribution function in the collisionless
limit and f, 1is the correction term proportional to v . Then

eg. (3.2) reduces to



of0 _ o (3.5)

A

of; _
VZ(EIKIOI z) B—Z— = Ce(fo) ’ (3.6)

and so on. Equation (3.5) simply states that f, 1is independent
of z:

fo = £0(&, k, 0) . (3.7)

Equation (3.8) is rewritten as

il L 2 (A(¥) [0 (x?-sin? kz 2 3y b 2eegy)
V2€3E

+ V2e& oaf, } , (3.8)
where 0 = Vph/VT'

The coefficient A(V) has a weak dependence on z if we
regard it as a function of &, «, 0 and z. Since, however,
this dependence is higher order in e , we can neglect it.

Then the z-dependence of the right-hand side of eq. (3.8) comes
solely from the expression (k2 - sin? %;)1/2 . We further
assume that the whole problem is periodic in z with the period
2n/k.

For untrapped particles, we integrate (3.8) with respect

to z over a period:

L (arg ) QL8 + 2e8£0) + o0avZEE £01) =0 (3.9)
where 27
I) = o5 Jj; (c? - sin? XZ /2 g,
=< kE(1/x) , (3.10)



E(x) being the complete elliptic integral of the second kind.
Equation (3.10) has a solution of the form:

dKz}

ETET for « > 1 . (3.11)

2
K
fo = C exp {-2e&k? - 0/2€E a f
1

The constant C should be chosen so that when « >> 1 , £,

should tend to the Maxwellian distribution:

24+ (v_+v_, )2
N 1 Vy h! |
fM(v) = ( an2)3/2exP (- VTf L
- 1 3/2 —& 2
= (;;;7) e exp (- (E-eE+2ekk
+ 20av2ef (k? - sin? %; 1/2)]
2
= (TTVlZ)a/Ze * expl-(E-e& + 2e&x?
T
+ 20av2e§ Kk + 0(1l/k)] (3.12)

On the other hand, the integral in eq.(3.11) has the following

asymptotic expression for large «:

2 2

lJK a? _ JK dt
O A T
1 7 1
= K - Cop - ZE - T§§ VXl + - for k >> 1,(3.13)
where

_ _ 1 m _
co = 1 j e ( IE(a) 1)du

0.6894 - -- (3.14)

Comparing eqgs. (3.11) and (3.12), we have for k > 1

—_n 2
fo(E,k,0) = (L1p)°/? o0
Vo
x exp {-(&-e&+2e&x? + 20av/2€E F(x))} , (3.15)
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where

2

n (¥ dat
F(k) = —+ J e + Cp . (3.16)
4 . tl/z E(t 1/4)

The importance of the presence of the constant term co will
be demonstrated in 85.

For the trapped particles, f,(£§,x,0) should be independent
of ¢ , because otherwise no steady state is possible.S)
Therefore, in the collisionless limit, the contribution of

trapped particles to the electron flow vanishes in the wave

frame.

§4. DC Current
Knowing the distribution function fo(V), we can calculate

the DC current density:

jo = = eno J £ (V) v, av (4.1)

where n, is the average electron density. In terms of the
variables § , «k and o0 , v, is expressed by eq.(2.6) and v_,_2
is given by

v,2 = E (1 - € coskz) vy® . (4.2)

The volume element in the velocity space, therefore, can be

written as

= 3 €& 1 - ¢ cos kz 2 \
21Tv_,_dv_,_dvZ = vT TS > L kz.1/2 dc* d& r . (4.3)
(k“-sin TT) o

We should note here that since the magnetic field has the
z-dependence of the form eq.(2.1), the cross-section of a

magnetic flux tube is proportional to 1/(1 - e coskz).



Taking this into account and using egs.(2.6) and (4.3), we

obtain the DC current carried by electrons:

I, = - engSy 7 I f dk ? f dE oce g vf*fo(E,K,o) , (4.4)
g

where S, is the cross-section of plasma at kz=7w/2. The trapped
particles give no contribution to this integral, because their

distribution function is independent of ¢ . Then, substituting

€q. (3.15) into eq.(4.4), we have

VT =] ()
I . =-eny, Sy — exp(-a?) I J dk ? J dg
€ /F ag 1 0
x 0eg exp{-(l-e+2ek?)E + 20a/26eE F(x)} . (4.5)

We are interested in the asymptotic expression of this
integral for € << 1. The calculation is a little lengthy but

straightforward. The result is given by

-2 3/2
Ie = e ngy S, vph(l - 1.064 e & € / + ), (4.6)
where
1
' ' = é _l____Tr_ -112 ) - é 2
1.064 V2 {4 + 3[0 u“[ZE(u)(l u?)-1+ 7 U l1du}
= 1.064 --- (4.7)

The first term in the bracket of eq.(4.6) is canceled
out by the current carried by ions (note that we are making
the analysis in the frame moving with the velocity Vph)'

Accordingly, the net current is given by

I =-1.064 e No SoV e € + e . (4.8)

ph



§5. Discussions

1. In a previous paperl), we used a slightly different
model and obtained the same form of expression as eq.(4.7) for
the net current. The numerical coefficient is, however, a
little different: 1.639 in the previous analysis in place of
1.064 here. The physical basis of the present analysis seems
more plausible than that of the previous one, so that we
prefer the present one. Since, however, the difference between
these two results is small, the conclusion on the required
power for the current sustaining in Ref.l is not much altered.

2. One thing we want to emphasize here is the importance

of accurate matching of the expression (3.15) with the

Maxwellian distribution for «k >> 1. If we neglect the constant

term in eq.(3.16) as done in the previous papersz'B), we get
in place of eq. (4.8)
1/2
I = - engSovphe / h(a) ' (5.1)
where
N2 2 (O 42
hia) = VZ co e & (1 + 20e® f et at) . (5.2)

0

This result is unreasonable in the sense not only that I is
proportional to 51/2 , but also that the net current increases
indefinitely as vph increases. The origin of the absurdity
can be easily traced to the behavior of f, (§£,x,0) for x >> 1.
Accordingly, in our analysis the presence of constant term in
eq.(3.16) is essential to obtain a physically reasonable result.

A similar modification may be also important for some

other problems. An application to the problem discussed by

Zakharov and Karpmanz) will be published in a separate paper.
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