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ABSTRACT

We consider briefly the effects of adding oscillating
multiple mirrors to a linear 8-pinch like plasma column.
The plasma parameters chosen for the example shown
correspond to those of a previously proposed linear
reactor configuration. We show that it should be easy
to dynamically stabilize the inherently unstable bumpy
f-pinch which results from adding static mirrors to a
linear 6-pinch. We show further that the energy in

the dynamic stabilization circuit can be used for
plasma heating since the oscillating field components

give rise to strongly Landau damped ion-acoustic waves.



1. INTRODUCTION

The purpose of this note is to consider a variaton of a
recently proposed method for reducing particle end loss from
linear 6-pinch like plasmas. Specifically we consider the
application of multiple magnetic mirrorsl applied to the
uniform longitudinal magnetic field characteristic of a 8-pinch
plasma. What follows can be equally applied to any linear
solenoidal plasma configuration regardless of the initial phase
of plasma production, i.e., implosion, electron beam or laser
heated. There are a number of techniques which have been
recently proposed for controlling particle end loss. Among
these are material end plugs, cold gas end plugs, magnetic cusp
end-fields and static multiple mirrors. In our opinion the
multiple mirror concept is the most attractive for the reasons
which we outline in the following.

We propose a version of the multiple mirror concept where
an oscillating component of the mirror field is externally
applied through an rf source. The total magnetic field consists
of three parts; the expression for the z-component of the field
is assumed to be Bo + Bl sin kz + b sin kz eimt where BO is the
main 0-pinch field, Bl is the static mirror field and b is the
time varying component of the mirror field. The frequency o
will be defined later and k = 27/% where % is the period of the
mirrors assumed to be equally spaced along the axis of the plasma

column. The static mirror field is that magnetic field component




responsible for the end loss reduction by means of the multiple
mirror concept. It is this field component, however, that is
also responsible for the "bumpy" 6-pinch equilibrium known to
be m = 1 unstable according to linear stability theory.2
It is primarily for this reason that the oscillating component
of magnetic field is applied; we show that dynamic stabilization
of the m = 1 mode may be possible at very reasonable power
levels. An extra positive feature of the oscillating magnetic
field is that the energy in the external rf source can be
transferred directly to the ions by Landau damping of ion sound
waves. In the following analysis it will be assumed that
b << Bl <Bo.

We do not discuss here in any detail the theory of particle
trapping resulting from the application of multiple mirrors.
We wish to use however the most recent result due to Lieberman1
which shows the following scaling for the axial particle con-

finement time T:
2.2
n .
T ML /Ale ’

where M is the maximum mirror ratio, L is fhe half length of
plasma column, A is the ion-ion mean free path and Vi is

the mean ion thermal velocity. If the ordering scheme shown
for the magnetic field component holds, then the ratio M =
(8, + B))/1(B, - B) (1 - 8)*/?). 1t is obvious that a high-8

plasma column is desirable since the local mirror ratio in the

plasma interior may be very large even though the externally



applied mirror ratio is not large. This in turn works bene-
ficially for the stability of the column since it is the ex-
ternally applied mirror fields which control the growth rate
of the m = 1 mode. Thus the conclusion at this point is that
the multiple mirror configuration has a potential figure of
merit of M2L/A over the classical value of 8-pinch confinement
time. We admit that we have ignored possible effects on the
trapping mechanism coming from the oscillating magnetic field.
We have begun an investigation of the multiple mirror trapping
under the influence of oscillating fields and will report on
this in the future.

The remainder of this note is concerned with dynamic

stabilization and rf heating considerations.




2. DYNAMIC STABILIZATION

The basic unstable mode which we are concerned with is
the long wavelength, m = 1 mode. The stability of this mode
in a bumpy 6-pinch was first considered by Haas and Wesson2
using a thin skin approximation for the equilibrium. Use of
the energy principle yields the following expression for the

linear growth rate y:

2.2
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1 - B(l+a /aw)

5 (1)
2 - B(l-a /ai)

where Po is the equilibrium density, k the wavenumber of the
applied magnetic field, a and a, the plasma and wall radius
respectively. This dispersion relation is valid only for

the "gross" mode which has n = 0 where n is the number of
radial nodes. According to (1), the gross mode is stabilized

for B8 > Bw where

B, = 1/(1 + (a%/a2)) (2)

Recently, diffuse profile theory3 has shown that for B8 > Bw
"localized" modes with radial structure appear and depending
on the value of a/aw can have very fast growth rates. The
eigenfunctions for the higher n modes indeed show a localized
structure which may be suppressed by finite Larmor radius
stabilization.4 Eigenfunctions with small but not zero radial

node numbers have been found at B > Bw which have rather broad



radial extent. Finite Larmor radius effects should not be too
effective in suppressing these modes; however, it has been
shown3 that by increasing the steepness of the profiles the
growth rates of these modes can be made small. At high B and
high temperatures we expect the plasma profiles to be flat
over the center of the column with reasonably steep gradients.
Thus there is reason to believe that the growth rates of modes
for which B > Bw will be smaller than the maximum for B < Bw
as long as B does not approach too close to unity.

For the present, let us choose B = 0.8 and a value of
a‘i/a2 = 4.5 (facilitating a comparison with numerical results3
for diffuse profile stability) and compute from (1) the growth

rate of the m = 1 gross mode as

v? = 0.1 x%82/0 u . (3)
The following discussion of dynamic stabilization of the mode
whose growth rate is given by (3) is due to Berge's5 early work
which considers a thin skin model at the bumpy 8-pinch. A
requirement for dynamic stabilization is that the externally
applied oscillation frequency w be much larger than the growth
rate y. Let us require y = 0.1 ®w and choose a maximum mirror
ratio M = 2.7 with a background 9-pinch field of 250 kilogauss.
The choice of 6-pinch parameters is based on reactor considera-
tions due to Logan6 et. al. The choice of M yields a value of
Bl = 25 kilogauss. Borrowing reactor parameters again, we

choose £ = 5m and n, v 8 x 1016 cm-3. These choices yield a



value of w/27® ~v 105 Hz. We shall see that this value of w is

very attractive from the standpoint of heating as well as dynamic
stabilization. We now invoke the sufficient stability condition

due to Berges;

2 2
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The stability calculation has assumed that a cylindrically
symmetric, "m = 0", oscillating magnetic field is applied to the
column. Here the small parameter § can be considered to be
equivalent to a/% and € is equivalent to b/Bo’ If we use the
following values: ' = 5/3, B = 0.8, Ti ~ 4,5 keV, ka = 67/500,

§ = 3/500 and the value for w obtained by using n = 8 x 1016 cm"3



where n is the deuterium particle density we find that condition

4 orbn 7 x 1078 B, = 155 gauss.

Thus, if b > 155 gauss, dynamic stabilization of the gross

(4) is satisfied for € > 7 x 10~

m = 1 mode should be expected. The frequency w turns out to be
around 100 kHz which is comfortably low. We shall see that
if b is made much larger than the value needed for stabilization
then considerable ion heating is obtained by the external rf

source.
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3. rf ABSORPTION

In this section we consider the effect of the oscillating
component of the magnetic field on the plasma column. Since
b/Bo < b/B1 << 1 we will use linearized equations of motion and
in particular we choose the guiding center plasma (GCP) model
due to Grad.7 The plasma column is considered to be cylindrically
symmetric and infinitely long; there is only a magnetic field
in the longitudinal direction. All quantities are perturbed
according to g(r,06,z,t) = g(r)exp i(-wt + m6 + kz) and consistent
with the last section we set m = 0. The governing equations

. . 8 . .
of motion in the form convenient for our analysis are:

dp*

3r = b1 rEr ’ (5)
drEr

- *
dr b2 P (6)

where p* = P+ ;_:*Bo/uo is the total perturbed perpendicular
pressure and £r is the radial plasma displacement. The

coefficients appearing in (5) and (6) are:

= - A
b, = r
2
b2 ru, 1l

2_2
- P k°B
A = - powZ + (1 H02 Lo, o
B~ /u Yo
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In the above the subscript ( )o denotes equilibrium quantity.
For clarity we suppress the subscript in the following. Kinetic
effects show up in the coefficient a, through the function 91.
Assuming a bi-Maxwellian distribution function for both ions

and electrons Gl can be simplified to:8

0, = 1(2,0) - 1%(1,1)/1(0,2) ,

I(¢,n) = I (&,n) + (-1)® 17(%,n) ,

+
P, 2
12,00 = 3 5h o+ £zt
P o
i
ot
i, = - 2 as et et
P, "o
I
1°(0,2) = - 1. (1 + £F z(gT))

where * refer to ion, electron, respectively and Z(£) is the

plasma dispersion function with argument £ defined as

m:)1/2

*
£ = § (=%

Equations (5) and (6) can be combined to give the following

equation:

(£ dp*) - ruo 1-8
dr 'A dr Bg (1 + (l-B)Uo

p* = 0 . (7)
0,)
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The 6-pinch equilibrium relations, ?L = (Bg - Bz(r=0))/2u°
and B = 1 - Bz(r=0)/B§, have been used in arriving at (7).
For the plasma parameters described earlier the following
relations hold.

2Tﬁ)1/z 2| 1/2

<< (—— .
+ m.

(

~lE

m

If we assume isotropic and equal temperatures, Te = Ti'

equation (7) reduces to

d r dp* ) (1-8) (a+l)
-— (3 ) - p* =0, (8)
dr A dr Bg (a+l) - % (a2+6a+1)

where

a=1+ £ z(ghH .

Assuming a thin skin 6-pinch equilibrium (8) can be put into

the following form:

2

d” p* 1 dp* 2
—d-%+;—3-§3—-k Qpt=0 , (9)
r

where

(1-8) (a+l)
k2v2  (a+l) - % (a2 +60+1)

2 2 .
and VA = Bo(l—B)/pouo. The solution of (9) which is regular

at the origin is given by Io(/6 kr) where I_ is a modified
Bessel function. Use of the well known vacuum solutions for

the perturbed magnetic field in cylindrical geometry plus jump
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conditions for br' the radial perturbed magnetic field, and
P* across the plasma-vacuum interface yields the following

dispersion relation:

/o Ié(/5 ka)
1 - w2 I_(Y0 ka)
2.2
k2v2
I, (ka)K, (ka ) - I.(ka )K, (ka)
- (1-p /2 L L_w 1 w1 . (10)

Io(ka)Kl(kaw) - Il(kaw)Ko(ka)

The boundary condition br = 0 at r = a, has been used in
deriving (10). For the parameters which we have considered
ka << 1 and kaw << 1 hold so that (10) may be reduced to a
simpler expression as follows:

2 (1-g) 1/2
2

%(a +6a+1) - (a+1) {1+ 0. (11

aw
(3—) -1

Results from a numerical solution of (11) for (aw/a)2 = 4,5
are shown in Fig. 1 where both real and imaginary parts of the
frequency are plotted as a function of B. For B = 0.8, the

damping rate of the m = 0, k # 0 oscillation is large; v Vv kv,,.

Ti
where Vi is the ion thermal velocity. The damping is due to
ion Landau damping. The rf energy goes directly into the ions
and only a few collisions are necessary to thermalize the ion
distribution. Similar estimates for damping at these frequen-

cies have been given by Stepanov.9 The actual mode which is

damped is the kinetic counterpart of the MHD slow magneto-
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10 An estimate of the ion heating rate can be

acoustic mode.
obtained from the following equation where it has been assumed
that uniform heating occurs over a cross~section of the plasma

column with constant profiles;

dn.T. 2
171 b
- T (12)
o
16 -3 3
If we use n, v 8 x 10 cm ©, b= bo x 10° gauss and the value

of Y at 8 = 0.8 then dT,/dt v 2 bg x 10°

eV/sec. The equiva-
lent rf power necessary can be computed from waV/Zuo where

V is the volume per unit length between the plasma and the
wall. For the parameters chosen earlier this number is 25 bg
megawatts per meter. This power level is high and is a result
of choosing b such that significant heating is obtained. The

minimum power level necessary for dynamic stabilization is

.6 megawatts per meter, a very reasonable level.
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4. CONCLUSIONS

We have shown that it should be possible to dynamically
stabilize a bumpy 6-pinch in an interesting reactor like
regime. The bumpy 6-pinch results from applying equally
spaced static multiple mirrors to a longitudinal 6-pinch
magnetic field. The addition of multiple mirrors implies a
drastic reduction in particle end loss. A part of the power
in the rf stabilization circuit can be transferred directly
to the ions by rf heating.

A major assumption in the above has been that the theory
of multiple mirror end loss reduction applies to a high density,
high B plasma with a fluctuating background magnetic field.

It is believed that since the w W vTi/Aii no serious effects
result but this is not proved. We intend to study this problem.

In conclusion, it would appear that a high B8, high
density, multiple mirror experiment should be performed. The
most likely candidate for such an experiment is a long im-
plosion heated 6-pinch with 'I'i ~ 1 KeV, n~ 1016, Aii v 5 m.,
About five to six Aii's are necessary resulting in a device
25730 meters long. Such an experiment would be, in our opinion,

the logical extension of the results of Logan6 et. al to the

more interesting high density, high B regime.
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Fig. 1: Solution of dispersion relation; real (mr) and
imaginary (mi) frequencies normalized to thermal

frequency as a function of 8.



