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ABSTRACT

Numerical studies of stability on kink and resistive tearing modes
in a linear stellarator are presented for various current profiles and
helical fields. In the case of an % = 2 helical field, a magnetic shear
vanishes and the stability diagram is given by the straight lines with

o 1)

1~ + 1" = const., where 19

is a rotational transform due to the plasma
current and 1‘S is due to the helical field. In the 2 = 2 stellarator

with 8

> 0.5, the m.h.d. stability against kink and tearing modes is
improved compared with that in tokamaks.

While an £ = 3 helical component exists, the magnetic shear plays
an important role in the stability properties. The stability diagrams
become fairly complex; however, they can be explained by properties of

the Euler equation. It should be noted that the internal kink modes

become more unstable than in tokamaks by the % = 3 helical field.



1. INTRODUCTION

Kink instabilities in a stellarator configuration have been studied
theoretically by many authors [1,2]. Johnson et al. reduced the energy
integral for fields represented by the stellarator expansion and obtained
stability diagrams on kink modes when ohmic heating current has a uniform
distribution.

Sinclair et al. generalized the earlier theoretical work on kink
instabilities and presented a series of experimental results in the
model C stellarator [3]. They calculated stability diagrams on kink
modes numerically in the case of various profiles of plasma currents
and helical fields. However, they did not notice the internal kink
mode with m =1 and n = 1 which may be observed as a precursor oscilla-
tion of internal disruption in tokamaks [4]. We will show that the
internal kink mode 1in a stellarator with an & = 3 helical field s
more unstable than in tokamaks.

The effect of finite resistivity on magnetohydrodynamic (m.h.d.)
instabilities in a stellarator has been discussed by Johnson et al. [5].
Sinclair et al. also presented stability diagrams on the tearing mode
analytically in the case of the uniform ohmic heating current [3]. It
is considered that tearing modes make magnetic islands and deteriorate
plasma confinement in tokamaks. In stellarators stability on tearing
modes is not well known. We will calculate stability diagrams on tearing
modes for various current profiles, following the method given by Furth
et al. [6].

Recent experimental results on WVIIA stellarator show that no
disruption of the current has been observed, even at z = 9+ 16 = 0.8

at the edge of the plasma column and the m.h.d. stability may be improved



by the & = 2 helical field [7]. 1In the L-2 stellarator the m = 1 and
n =1 mh.d. oscillation is observed for z(0) = 1 [8]. In order to
interpret these experimental results, more detailed stability diagrams
on kink and tearing modes should be required.

In this paper we present detailed stability diagrams on the kink and
resistive tearing mode in ste]]arators of various radial profiles of ohmic
heating currents and helical fields by numerical calculations of the Euler

equation.

2. COMPUTATION OF STABILITY DIAGRAMS

We treat a pressureless plasma in a linear stellarator with ohmic
heating current. We neglect toroidal effects except the periodicity of length
L = 2nR. In this paper, current driven kink modes and tearing modes
are considered, since these non-localized instabilities are crucial for
plasma confinement. We introduce three models corresponding to increas-

ingly peaked current distributions:

. 4
flattened model: Jz(r) = jo ( - —é?~) (1)
)
. . - _ ~ rl
parabolic model: Jg-(r) - ). ( (- a_’-) , (2)
ked model: : s T\4
PR =5 (- (%)

where a is the minor radius of the current channel, jo the current
density at the center of the plasma column. These configurations are
shown in Fig.1. The external region from r = a to r = b is a vacuum
region, where b is the wall radijus.

A helical field is considered to produce only the rotational trans-



form angle 16(r) and the following cases are calculated:

42 : o=, (+)
f=2+4=3 : cn = zf(o.296+ 0.714 (—-g—)Z),

) 2
£=3: L8<r>=lo(~§—) : ({)

where 13 is the rotational transform angle at the surface of the plasma
column. Helical fields given by Egs.(4), (5) and (6) correspond to
those of WVIIA [7] and JIPP T-II [9] stellarators, L-2 stellarator with
the short pitch & = 2 helical coil [8] and CLEO stellarator [10], re-
spectively.

Stability diagrams are obtained from the energy integral which is

reduced to
gn* dVv yo\ ¥
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Here & denotes the radial component of the plasma displacement. This
expression is obtained for fields represented by the stellarator expan-
sion. In Eq.(7) several terms that can make negative contributions of
order (kr/m)2 are neglected, since kr << m is available for stellarators.
The second term in Eq.(7) vanishes in our case, so that the plasma cur-
rent falls to zero at the surface r = a. The term containing JB in o
also vanishes for a pressureless plasma, since this term denotes a dia-
magnetic effect.

First we consider the stability criterion of kink modes. We follow
the analysis given by Newcomb [11]. From the energy integral of Eq.(7),

we reduce the Euler equation to

d(Yd’\l’)_O(,\!/__:O‘ (8)
ar ay Y

Equation (8) is integrated numerically in independent subintervals of a
given helical equilibrium. The solution of Eq.(8) is given by ¢ ~ r"
near the origin. We integrate outward from the center r = 0 to the next
singular point in the plasma. When there is no singular point inside
the plasma, integration is made to the wall without taking account of
singular points in the vacuum. At the plasma surface Y and Y' are
continued to the analytical solution in the vacuum, that is, Y = Ar™ +
Br ™. When there is one singular point inside the plasma, the integra-
tion is made in the two regions, [0, rs] and [rs, b], where re denotes
the singular point. The latter integration is made inward from the wall
with the boundary condition y(b) = 0. When several singular points
exist in the plasma region, we follow the theorem by Newcomb. Near the

singular point inside the plasma small solution ¥ behaves such that

Y= |r- rsl and ' = 1. By these initial conditions the Euler eqguation is
solved from the one singular point to the other singular point. The
helical equilibrium is unstable against



the kink mode if y passes through zero in any independent subintervals.
We also consider tearing modes when the singular point exists in
the plasma regioh. The stability criterion for the tearing mode is

determined by the difference A' in the logarithmic derivative of ¢ [5]:

'=f\—\lf \}r/\lf(rs , (3)

where w] and wz are the solutions of the Euler equation in the respective
subintervals r < re and r > re with the condition w](rs) = wz(rs). If
this difference is greater than zero, the helical equilibrium is unstable

against the tearing mode.

The parameters used in this calculation are as follows: a = 1 (the
length is normalized by the plasma radius), b = 1.44 and 3.0, R = 20,

k = 0.05 (this corresponds ton = 1), BO = 1.0, That b/a = 1.44 corre-
sponds to the dimension of the JIPP T-II stellarator [12]. Since terms
of the order of (kr/m)2 are neglected, we restrict ourselves to the

illustrative value k = 0.05, which does not appear explicitly in the

Euler equation. The stability diagrams are obtained in the (xg, Yg)

8

plane, where both the rotational transform at the plasma surface tg and L8

extend from zero to one.
3. STABILITY OF VARIOUS PROFILES OF PLASMA CURRENTS AND HELICAL FIELDS

Stability diagrams of the & = 2 helical field are shown in Fig.2.
The region of the m = 1 external kink modes which are unstable due to the
singular point in vacuum js almost independent of the current
profile. The m = 2 and m = 3 external kink modes are stabilized accord-

ing to increasingly peaked current distributions and especially in the



case of the peaked current given in Eq.(3) the modes are completely stabi-
Tized. On the other hand the m = 2 and m = 3 tearing modes are unstable for
zg‘<0.5evenir1the peaked model. While the stellarator expansion is used in
the energy integral, these tendency is similar to the stability analyses of
tokamak by Shafranov [13]. The unstable region of the m = 1 external kink

mode with zero 1% (i.e., tokamak) is given by

(a/p)2< 2wn /1T < | (lo)

The Euler equation of Eq.(8) can be shown in terms of g as follows:

(v’ vlgl),-{(mz-’)wz" (37 1%%r? ls")rz)} £=0, (I1)

where the prime denotes the derivative with respect to r. For the 2 = 2

helical field, Eq.(11) is reduced to

(%) = (m=)rv*s | (12)

Since both 15| and 15" are equal to zero. This equation is equivalent to
the one of the tokamak within our assumptions used here. For the 2 = 2
helical field the m = 1 internal kink mode is marginally stable, since we have
neglected the pressure term and terms of the order of (kr/m)2 which make
negative but small contributions to the energy integral. From Eq.(11)
the derivative of £ is given by
| r
$'= o | {6 (e Pt ) vy Jar. (2

The solution of the Euler equation for the m = 1 mode is given by £ = const.

near the origin. From Eq.(13) the solution £ of the m = 1 internal kink mode

has its derivative of zero for 15 = 16 = 0 and remains constant from the origin



to the singular point. If we take account of the inertia term pw2

)2

and
terms of order of (kr)“ in the energy integral, & falls to zero at the sin-
gular point and remains zero to the wall. This means that the m = 1 interral

kink mode is marginally stable for the £ = 2 helical field [14].

Figures 3 and 4 show the stability diagrams with the finite component
of the £ = 3 helical field. The stability diagrams of the £ =2 + & =3
helical field are essentially determined by the £ = 3 helical field.

It is seen from Eq.(11) that the finite component of the £ = 3
hé]ica] field has stabilizing or destabilizing effects on the stability
of the kink mode, depending on the value of the coefficient of £. For

the m = 1 kink mode Eq.(11) is reduced to

(%)= = (3ri¥+r* 1% )roy (14)

where 1(S and 16 are always positive.

The external kink mode with no singular point in the range of 0 < r
< b can be unstable. In the region of horizontally striped areas by
dashed lines, v remains positive and the right hand side of Eq.(14) has
~a negative value if & is positive. From Eq.(14) the solution & for the
m = 1 external kink mode has a negative derivative of £ and leads to
zero crossing, i.e., instability of the mode even without the singular
point. The m = 1 external kink mode with the singular point in the
vacuum is explained by the same reason. The unstable m = 1 'external
kink mode' with the singuiar point inside the plasma is shown in the
figures of the flattened and parabolic current profiles. We consider
this instability is equivalent to the external kink mode, since the
surface of the plasma column is perturbed. In this case v is negative

and £ has a positive derivative in the range of 0 < r < r Instability

.
does not occur from consideration of the behavior of £ in this range.



In the range of ro<rc< b, however, v is positive and £' < 0. Then
integrating Eq.(14) from r = ro with a small solution near res i.e.,
€ = const., we can see £ crosses zero in the subinterval [rs, b] for large

] "
16 and 16 .

For the helical equilibriwi of a finite & = 3 helical field, the
m = 1 internal kink mode occurs to be unstable for the same reason of

negative derivative of £. When 1g is zero the mode is marginally stable

in accordance with the case of the & = 2 helical field.
The m = 2 and m = 3 internal kink modes also can become unstable if
the condition _
(m>=1)v < 3718+ y=% (1)
is satisfied. From the above conditionit is necessary for the modes to
be unstable that the rotational transform angle associated with the & =
3 helical field is larger than some critical value as shown in the figures.

The modes are more unstable when 1g

increases.
Wall effect is shown in Fig.5 for the parabolic current profile and
the various helical fields. Comparing with Figs.2-4 it is seen from
Fig.5 that wall stabilization is effective onthe m=1 and m=2 external kink modes
and less effective on the m = 3 external kink and the internal kink modes.
The results are similar to those of tokamak given by Shafranov [13]:
external kink modes are stabilized by the wall as m decreases.
The unstable ranges of the m = 2 and m = 3 tearing modes as a func-

tion of ry are shown in Fig.6 for various current profiles and the £ = 3

helical field. The tearing modes become more unstable according to

é
0

same as the case of the & = 2 helical field and this quantity is inde-

more flattened current profiles. When 1> = 0, values of A' are
pendent of the rotational transform associated with the £ = 2 helical
field. 1In Fig.6(b) the effect of the wall location is shown when 13 = 0.

In the case of the m = 3 mode, the effect is too slight to be seen on
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the graph. The constant ¢ approximation [15] may not be applicable for
the m = 1 tearing mode appearing in the flattened and parabolic current
profiles, since the finite-resistivity region is not assumed to be very

thin compared with the radius.

4. CONCLUDING RAMARKS

We obtain stability diagrams on the kink and tearing modes for three
current profiles and three cases of linear stellarator configurations.
These diagrams will be useful in investigating m.h.d. properties of
stellarators with an ohmic heating current. More detailed studies
including plasma pressure and toroidal effects are remained for the

future research.
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FIGURE CAPTIONS

Profiles of ohmic heating currents jz(r) and rotational
transform angles 19(r) associated with the plasma current in
arbitrary units. Solid lines refer to the current, dashed ones
to the rotational transform angle. 1: flattened model, 2:
parabolic model, 3: peaked model.

Stability diagrams for the £ = 2 helical field. (a): flattened
model, (b): parabolic model, (c): peaked model. Horizon-
tally striped areas and dotted ones are unstable regions against
an external kink mode and a resistive tearing mode, respectively.
The regions into which singular points fall are shown for the
m=1, n=1 diagram.

Stability diagrams for the £ = 2 + & = 3 helical field. (a):
flattened current, (b): parabolic current, (c): peaked current.
Horizontally striped areas by dashed lines are unstable regions
against an external kink mode which has no singular point in

the region 0 < r < b. Vertically striped areas are unstable
regions against an internal kink mode. There are more than one
singular points where the areas indicating the position of re
overlap each other.

Stability diagrams for the £ = 3 helical field. (a): flattened
current, (b): parabolic current, (c): peaked current.

Stability diagrams for the parabolic current and the wall posi-

tion of b/a = 3. (a): £ =2, (b): =2+ 2 =3, (c): & = 3.

I}
N

External kink mcdes of m=1 and m extend their unstable

regions. The arez of the unstable

3
1

3 mode changes little.



Fig.6.
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Values of A' as a function of re in the case of the & = 3 helical
field. (a): flattened current, (b): parabolic current, (c):
peaked current. Solid lines refer to the m = 2 mode, dashed
ones to the m = 3 mode. The effect of the wall location is

shown for the parabolic current profile with 1g = 0.
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