# INSTITUTE OF PLASMA PHYSICS NAGOYA UNIVERSITY

# RESEARCH REPORT

Extraction of a Long-Pulsed Intense Electron Beam from a Pulsed Plasma based on Hollow Cathode
Discharge

Johshin Uramoto

IPPJ-<sub>288</sub> May 1977

Further communication about this report is to be sent to the Research Information Center, Institute of Plasma Physics, Nagoya University, Nagoya, Japan.

#### Abstract

An intense electron beam (up to 1.0 kV, 0.8 kA in 0.8 cm $\phi$ ) is extracted along a uniform magnetic field with a long decay time (up to 2 msec) from a pulsed high density plasma source which is produced with a fast rise time (< 100 µsec) by a secondary discharge based on a dc hollow cathode discharge. Through a back stream of ionized ions from a beam-extracting anode region where a neutral gas is fed, a space charge limit of the electron beam is so reduced that the beam current is determined by an initially injected electron flux and concentrated in a central aperture of the extracting anode. Moreover, the beam pulse width is much extended by the neutral gas feed into the anode space.

#### §1. Introduction

A high density plasma has been widely used as an electron source of a high current electron gun. The maximum extractable currrent is limited by a space charge law. Then, to reduce a space charge limit, two usual methods are considered: method is to reduce a distance between an extracting anode and a plasma surface. However, if a high extracting voltage is applied near a surface of the high density plasma source as shown in Fig.1(A), a breakdown is apt to generate between the beam extracting anode and the plasma source. Moreover, a large part of the electron beam current is lost into the extracting anode itself, because the extracting electric field is diverged around the central aperture. To avoid this breakdown and to concentrate the electron beam in the anode central aperture, the distance between the extracting anode and the plasma source must be sufficiently long. Then, the space charge limit becomes serious.

The other method is to introduce a neutral gas into the beam acceleration region as shown in Fig.1(B). The electron beam is neutralized with ions which are ionized by the beam electrons themselves. However, this electron beam becomes unstable through the ion loss and causes a discharge through an instability as has been pointed out already. From another standpoint, a pulse width of a neutralized electron beam is limited by a back streaming time of ionized ions from the vicinity of the acceleration anode. Thus, an intense long pulsed electron beam has not been produced in this method.

We have reported a new method 2) to reduce the above

space charge limit stably and extract a "dc"-intense electron beam from a plasma source. In this paper, we will show that the new method is useful also to extract a "long pulsed"-intense electron beam, while principles of the new method are discussed more precisely than the previous report.

As another remarkable point in this paper, a high density plasma in a long pulse duration is produced with a fast rise time from a Ta hollow cathode discharge. (3,4) Usually, the hollow cathode is simple in the mechanism and strong against ion back stream damages in comparison with ordinary W wire cathodes or oxide cathodes. However, as the hollow cathode must be pre-heated, a discharge does not start with a fast rise time. Therefore, the hollow cathode discharge has not been used as a pulsed plasma source. We find an indirect pulse operation method on the hollow cathode.

## §2. Principles of The Method

To reduce the space charge limit stably and to concentrate the accelerated electrons in the central aperture of the extracting anode, a new method is shown in Fig.2. (This principle has been reported already. In Fig.2, the anode region is expanded and a neutral gas is introduced locally. Then, in the anode region, ions are produced by accelerated electrons themselves through collisions with the neutral gas. The ionized ions stream backwards along the electric field. Here, if a pressure in a region between the anode A and source electrode S is adjusted in an optimum value, we can realize a state that collisions are negligible for electrons

and effective for ions. These relations for collisions are expressed by, if columb collisions are small,

$$\lambda_{en} >> L$$
,  $\lambda_{in} \lesssim L$ , (1)

where  $\lambda_{\text{en}}$  ,  $\lambda_{\text{in}}$  and L are an electron-neutral, ion-neutral particle collision mean free path and a length between the anode A and the source electrode S. Thus, we may consider that the electron space charge is compensated by diffused back ground ions over all the accelerating space between A and S, while electrons are accelerated freely. Then, if a discharge does not occur between S and A, the accelerated electron beam current is limited by the initial plasma (thermal) electron current injected from the plasma sources. This means a temperature or flux limit. Then, the electron current is independent of the accelerating anode voltage. [By this characteristic on the accelerating voltage, we can divide an electron beam state in this flux limit from both ion and electron collisional type ( $\lambda_{en}$  << L and  $\lambda_{in}$  << L) on from both ion and electron collisionless type (  $\lambda_{\mbox{\footnotesize en}}$  >> L and  $\lambda_{\text{in}} >> L$ ). In the case of both ion and electron collisional type, the electron current is proportional to the applied voltage. This case means a plasma resistance type. On the other hand, in the case of both ion and electron collisionless type, the electron current takes a space charge limit after  ${\rm V}^{3/2}$  for the anode applied voltage V. These three voltage characteristics are shown roughly in Fig.3.]

A pulse width  $\Delta t$  of an neutralized electron beam current is related to the neutralization time  $\tau_{\,\bf i}$  in a neutral gas and the ion loss time  $\tau_{\,\bf j}$  in the electron beam. Here, the

neutralization time for the electron beam is determined from  $n_i = P \eta \ (v_b) \ n_b \ v_b \ dt$ , where  $n_i$  is an ion density ionized by the electron beam (it's density  $n_b$ , velocity  $v_b$ ), P and  $\eta \ (v_b)$  are a neutral gas pressure and the ionization probability (ion pairs per cm.Torr). The time dt expresses an ion build-up time in the electron beam while the ionized ions are "stationary". Thus, the neutralization time is defined by, as a time  $\tau_i$  when  $n_i$  reahces  $n_b$ , that is,  $dt(n_i = n_b) \equiv \tau_i$ ,

$$\tau_i = \frac{1}{P\eta(v_b)v_b} = \frac{1.7 \times 10^{-2}}{P\eta(v_b)v_b^{1/2}},$$
 (2)

where  $\mathbf{V}_{b}$  is an electron beam energy in eV unit,  $\boldsymbol{\tau}_{\text{i}}$  is measured by  $\mu \, \text{sec}$  and P is measured by Torr.

Obviously, the neutralization time  $\tau_i$  gives a rise time for the pulsed electron beam current. On the other hand, the pulse width  $\Delta t$  of the current is limited by the ion loss time  $\tau_\ell$  from the electron beam. These relations are expressed by,

$$\tau_{\ell} > \Delta > \tau_{i} . \tag{3}$$

In a case where a neutral gas is introduced directly as shown in Fig.1(B), the ion loss time is very short because of a back stream of ions.

However, in a case of the expanded anode space where the neutral gas is introduced, the ion loss time  $\tau_{\ell}$  in the acceleration space does not become important if the neutralization time  $\tau_{i}$  in the expanded anode space is much below  $\Delta t$ . Because sufficient ions ionized by the electron beam itself stream backwards into the acceleration space from the expanded anode space. Then, the pulse width  $\Delta t$  is determined only by a pulse width of an injected plasma electron current.

Thus, the anode space is very important for the beam neutralization over a long pulse duration.

In the plasma source for the electron injection, we must determine a neutral gas pressure in which the initial electron flux  $n_{\text{O}}v_{\text{O}}$  is larger. Moreover, if the plasma source is produced by a dc discharge, the discharge cathode must be protected from bombardments due to ions which back stream from the electron accelerating region. To avoid these ion bombardments by neutral particle collisions, both the neutral gas pressure and the plasma source length become important (as shown in Fig.2). That is, the pressure and the length of the plasma source must be determined from a maximum of  $n_{\text{O}}v_{\text{O}}$  and the plasma source stability as reported already.  $^{2}$ 

Under these principles, a schematic of the experimental apparatus in a dc operation is shown in Fig.4, which is the same with an apparatus in a pulse operation (described next) except  $S_2$  electrode and external circuits. It is remarkable that the plasma source is produced from a hollow cathode discharge. A dc discharge is fired between a first anode  $S_1$  and Ta pipe cathode K where a neutral gas is introduced through the pipe. Next, the secondary discharge is fired between  $S_1$  and the second anode  $S_2$  by a voltage on a load resistance  $R_L$  of  $S_1$ . Thus, a stable plasma is produced between  $S_2$  and the third anode  $S_3$  in a helium pressure of  $10^{-2}$  Torr and a length of  $\overline{S_2S_3} = 12$  cm, while the pressure between K and  $S_1$  is about 2 Torr and the pressure  $S_1$  and  $S_2$  is about  $10^{-1}$  Torr. The characteristics of this apparatus are similar to the case of the oxide cathode as reported

already. <sup>2)</sup> However, a more intense electron beam is produced easily under a Ta cathode which is much stronger than the oxide cathode. Up to now, we produce a dc intense electron beam in energy from 0.2 kV to 2.0 kV with a maximum 40 A in 0.8 cm $\phi$  in a helium gas pressure  $10^{-4}$  Torr.

Next, to extract a much more intense electron beam, this dc operation in the plasma source will be developed in a pulsed operation.

# §3. Experimental Procedure

A schematic of the apparatus is shown in Fig.5. It should be remarkable that a pulse plasma source with a fast rise time (below 100  $\mu sec$ ) is produced from a cold cathode indirectly. A primary plasma source is produced by a dc hollow cathode discharge between an electrode  $S_1$  (with a central aperture of 0.6  $cm\phi$  in diameter and 2.5 cm in length) and a Ta pipe electrode K (0.6  $cm\phi$  in outer diameter and 0.4 cm $\varphi$  in inner diameter). The gap between  $\mathbf{S}_1$  and K is about 1.0 cm. Usually, the dc hollow cathode discharge is kept with a discharge voltage 75 V and current 26 A( $R_d$ 2  $\Omega$  and  ${\rm V_{\mbox{\scriptsize d}}}$   $\approx$  127 V) in a helium gas pressure of about 2 Torr. To stop the primary dc plasma flow into  $\overline{S_2S_3}$  space, an electrode  $S_2$  (0.6 cm $\phi$  in central aperture diameter and 8.0 cm in length) is put at a distance 10 cm apart from  $S_1$ . The pressure between  $S_1$  and  $S_2$  is about  $10^{-1}$  Torr. A negative potential  $\rm V_{_{\rm C}}$  through a resistance (R  $_{_{\rm C}}$   $\approx$  20  $\Omega) is applied$ betweeen  $\mathbf{S}_1$  and  $\mathbf{S}_2$ . A pulsed plasma for electron injection is produced between  $S_2$  and the third electrode  $S_3$  (with 0.8  $\text{cm}\varphi$  in central aperture and 1.0 cm in length)

which is 12 cm apart from  $S_2$ . A pressure between  $S_2$  and  $S_3$  is kept at about  $10^{-2}$  Torr, which is determined experimentally. Then, if the negative potential  $V_c$  between  $S_1$  and  $S_2$  is set at -80 V, the dc primary plasma electron flow into  $\overline{S_2S_3}$  space is reduced below 20 mA by the neutral particle collisons and the retarding electric field of  $V_c$ .

Here, if a pulse potential above  $\rm V_C$  is applied between  $\rm S_1$  and  $\rm S_3$  electrode by a charged condenser  $\rm C_S=10^{-2}~F$  through SCR, a pulsed secondary plasma is produced with a fast rise time (below 100 µsec) between  $\rm S_2$  and  $\rm S_3$ , while the pulsed plasma electrons are injected between  $\rm S_3$  and an acceleration anode  $\rm A_1$ . Then, to lead the secondary plasma from  $\overline{\rm S_1S_2}$  to  $\overline{\rm S_2S_3}$  space, a loading resistance  $\rm R_L\approx0.5~\Omega$  is connected to  $\rm S_2$ . The pulsed plasma electron current between  $\rm S_2$  and  $\rm S_3$ , and its pulse duration are adjusted by a charging voltage  $\rm V_S$  for  $\rm C_S$  and a capacitance of  $\rm C_S$ .

The pulsed plasma electrons injected from  $\overline{S_2S_3}$  space to  $\overline{S_3A_1}$  space are accelerated by a potential of condenser  $C_A=9\times 10^{-4}$  F which is charged by a dc power supply voltage  $V_A$ . Each space between K and  $S_1$ ,  $S_1$  and  $S_2$ ,  $S_2$  and  $S_3$ , or  $S_3$  and  $A_1$  is connected by a pyrex glass tube with a diameter of 10 cm. A length between  $S_3$  and  $A_1$  is 40 cm, where the helium gas pressure is kept within  $(2.8 \sim 4.2) \times 10^{-4}$  Torr under the experimental results in the dc operation.

Ion or electron mean free path of collisions in helium gas is estimated by, roughly,  $\lambda_{\rm in}\approx 2.0\times 10^{-2}\sqrt{v_{\rm i}}/P\,({\rm cm})$  and  $\lambda_{\rm en}\approx 5.0\times 10^{-2}\sqrt{v_{\rm e}}/P\,({\rm cm})$ , where  $V_{\rm i}$ ,  $V_{\rm e}$  and P are an ion, electron temperature in eV unit and a helium gas pressure

in Torr. For an experimental optimum pressure P  $\approx 4.0 \times 10^{-4}$  Torr, we obtain  $\lambda_{\rm in} \approx 5.0 \times 10 \sqrt{V_{\rm i}}$  (cm) and  $\lambda_{\rm en} \approx 1.3 \times 10^2$   $\sqrt{V_{\rm e}}$  (cm). The ion temperature or the electron temperature in the plasma injected into  ${\rm A_1S_3}$  region is estimated to be  ${\rm V_e}$   $\geq 10$  eV and  ${\rm V_i} \leq 0.5$  eV from data in the dc operation. Thus, we can estimate  $\lambda_{\rm en} \geq 4 \times 10^2$  cm and  $\lambda_{\rm in} \leq 3.5 \times 10$  cm. These mean free paths are compared with the distance  $\overline{{\rm A_1S_3}} = 40$  cm under the experimental principle "electron collisionless and ion collisional". A helium gas is introduced between acceleration electrodes  ${\rm A_1}$  and  ${\rm A_2}$  where the pressure is varied from 2.1  $\times$  10<sup>-4</sup> to 3.5  $\times$  10<sup>-3</sup> Torr experimentally. The distance between  ${\rm A_1}$  and  ${\rm A_2}$  is 16 cm, which is very important for the electron beam stability as reported already. The  ${\rm A_1}$  or  ${\rm A_2}$  electrode is 6 cm or 5 cm in length and has a central aperture of 1.6 cm $\phi$  or 1.4 cm $\phi$ .

Under the most optimum experimental conditions, a large part of the accelerated electron beam is collected through  $\overline{A_1A_2}$  region to an electrode  $A_3$  (given a potential equal to  $A_1$  or  $A_2$  by a charged condenser  $C_B=1.8\times 10^{-3}$  F). The pressure in  $\overline{A_2A_3}$  region is kept around  $10^{-4}$  Torr. Through a small resistance  $R=0.1~\Omega$ , the electron beam current to the final electrode  $A_3$  is measured by setting a switch SW on position 1, while the total beam current to all anode electrodes  $(A_1, A_2)$  and  $(A_3)$  is measured by turning the SW on position 2.

A magnetic field B is applied uniformly at B = 1.3 K gauss from  $A_3$  to  $S_2$ . However, the magnetic field is diverged from  $S_2$  to K and is set at B = 300 gauss on  $S_1$  to stabilize

the primary dc discharge.

# §4. Experimental Results

Dependence of the electron beam current ( $I_{B1} \equiv I_b$ ) to  $A_3$  on the pressure  $P_A$  between  $A_1$  and  $A_2$  is shown in Figs.  $6 \, (A) - 6 \, (F)$  under an accelerating voltage  $V_A = 400 \, V$  and the plasma source secondary discharge voltage  $V_S = 280 \, V$ . Then, a voltage on the condenser  $C_B$  is monitored, which stays within 5/6 of  $V_A$ . We find that the pressure  $P_A$  must be above  $7.0 \times 10^{-4}$  Torr to produce a large electron beam current above  $100 \, A$ . Then, the electron beam is produced with a fast rise time below  $100 \, M$  sec and a long decay time  $2 \, \text{msec}$ .

Dependence of the electron beam current  $I_b$  on the accelerating voltage  $V_A$  is shown in Figs. 7(A) - 7(D) under  $P_A = 1.4 \times 10^{-3}$  Torr. The electron beam current hardly depends on  $V_A$  (for above 200V).

The "electron beam mode" is divided from a "discharge mode" by monitoring a total anode current ( $I_{B2} \equiv I_B$ ) (to  $A_1$ ,  $A_2$  and  $A_3$ ) and a voltage on condenser  $C_A$  or  $C_B$ . In the discharge between  $S_3$  and the anodes ( $A_1$ ,  $A_2$  or  $A_3$ ), the voltage on  $C_B$  or  $C_A$  drops abruptly as shown in Fig.8 under  $V_A = 660$  V,  $P_A = 2.0 \times 10^{-3}$  Torr, and  $V_S = 280$  V, while a current to anode  $A_3$  much exceeds the plasma source current  $I_S$ . In the electron beam extraction, a current conservation among the total current  $I_B$  to the accelerating anodes ( $A_1$ ,  $A_2$  and  $A_3$ ), the plasma source current  $I_S$  and a current  $A_S$  through the loading resistance  $A_S$ , is seen. That is, as

seen from Fig.9

$$I_{S} = I_{B} + \Delta I_{S} . \tag{4}$$

For  $V_A$  = 400 V,  $V_S$  = 280 V and  $P_A$  = 1.4 × 10<sup>-3</sup> Torr, we find for the maxima that  $I_S$  = 800 A,  $\Delta I_S$  ≈ 400 A and  $I_B$  = 400 A as seen in Figs. 9(A), (B) and (C). A ratio  $I_b/I_B$  between the electron beam current  $I_b$  to  $A_3$  and the total current  $I_B$  to the all anodes shows a beam concentration rate in the central apertures of  $A_1$  and  $A_2$ . For the optimum pressure  $P_A$ , the beam concentration  $I_b/I_B$  is up to 0.8 as seen in Figs. 9(B) and (C). On the other hand, if the neutral gas is not fed between  $A_1$  and  $A_2$ , the ratio  $I_b/I_B$  is below 0.2 as seen from Fig.6(A).

For  $P_A$  > 3.5 ×  $10^{-3}$  Torr and  $V_S$  > 350 V, a discharge between  $S_3$  and anodes  $(A_1, A_2 \text{ or } A_3)$  is apt to start. Under the present experimental conditions, an intense electron beam with a maximum energy 1 kV and a maximum current 0.8 kA is produced in an exponential decay time 2 msec when  $V_S$  = 350 V and  $P_A$  ≈  $1.0 \times 10^{-3}$  Torr.

Under  $V_A$  = 400 V,  $V_S$  = 280 V and  $P_A$  = 1.4 × 10<sup>-3</sup> Torr, the plasma wall potential in the accelerating region between  $S_3$  and  $A_1$  is investigated radially by a probe  $P_r$  which is put in the middle point between  $S_3$  and  $A_1$ . Figs. 10(A) and (B) show each potential near the tube wall (r ≈ 4.5 cm) or near the center (r ≈ 0.5 cm). Then, the voltage on the accelerating anode  $A_1$  is monitored in Fig.10(C). It should be remarkable that the potential near the tube wall is much higher than a potential of the anode  $A_1$ , and that the

potential near the center is much below the potential of  $A_1$ .

#### §5. Discussion

It is considered that an electron beam is produced under an initial flux limit from the following experimental results: a nearly constant characteristic of the beam current on the accelerating voltage  $\boldsymbol{V}_{\boldsymbol{A}}$  and a linear potential increment from the plasma source electrode  $S_3$  to the first anode  $A_1$ . A large difference between the beam mode and the discharge mode in  $\overline{\mathbf{A}_1\mathbf{S}_3}$  region is on the voltage drop of condenser  $C_{\underline{A}}$  or  $C_{\underline{B}}$  also. In a flux limit electron beam, a capacitance of condenser  $C_{\lambda}$  sufficient to accelerate the electron beam in a constant energy, is determined from a beam equivalent resistance  $R_{\mathsf{h}}$  and an initially injected electron current ( $I_s - \Delta I_s$ )  $\approx I_B$ . The  $R_b$  is defined by  $R_b \approx V_b/I_B$ , while  $V_b$  is a beam accelerating potential and is approximated by  $V_b = V_A \exp(-t/c_A^R R_b)$ . On the other hand, the injected plasma electron current  $(I_s - \Delta I_s) \approx I_B$  is experimentally observed by  $I_{B} \approx I_{O} \exp(-t/C_{S}R_{S})$  where  $I_{O}$ and  $\mathbf{R}_{\mathbf{S}}$  are an initial beam current after the rise time and a plasma source effective resistance. From these equations, we obtain

$$V_{b}(t) = V_{A} \exp(-t/\tau_{eff})$$

$$\tau_{eff} = C_{A}(V_{b}/I_{o}) \exp(t/C_{s}R_{s})$$

$$\approx C_{A}(V_{A}/I_{o}) \exp(t/C_{s}R_{s}) .$$
(5)

Thus, an effective time constant  $\tau_{\scriptsize \text{eff}}$  of the voltage drop

on  $C_A$  is much extended by a factor of  $\exp(t/C_SR_S)$  which increases temporally. The maximum  $R_S$  is estimated by  $R_S \approx 0.3~\Omega$  from the plasma source current  $I_S$  and the charging voltage  $V_S$ . Experimentally, the voltage on  $C_A$  is sustained above 5/6 of  $V_A$  over a long pulse duration of the electron beam under  $C_A \approx 9 \times 10^{-4}$  F,  $C_B = 1.8 \times 10^{-3}$  F,  $V_A = 400~V$ ,  $I_O \approx 400~A$  and  $V_S = 280~V$ . It is noted that pulse forming networks are not necessary if the electron beam current decays exponentially.

In a discharge mode between the anodes (A<sub>1</sub>, A<sub>2</sub> and A<sub>3</sub>) and S<sub>3</sub>, the voltages on C<sub>A</sub> and C<sub>B</sub> drop abruptly since the effective discharge resistance is very small (below 0.02  $\Omega$ ) compared with the beam resistance (above 1.0  $\Omega$ ). The discharge current (~ 2 kA) much exceeds the injected current (~ 0.4 kA) from the plasma source. Therefore, the current conservation is not found.

In relation with a pulse width of the extracted electron beam, an neutralization time  $\tau_{\bf i}$  in the expanded anode space  $\overline{A_1A_2}$  is important, which is estimated in Eq.(2) already. In a case of no gas introduction into  $\overline{A_1A_2}$ , the neutralization time is above 10 µsec since  $P_A \le 2 \times 10^{-4}$  Torr,  $V_b \approx V_A = 400$  V and  $\eta(V_b) \approx 1.0$  in Eq.(2). (Obviously, if the  $\overline{A_1A_2}$  space is zero, the anode space is determined only by the  $\overline{A_2A_3}$  space where the pressure is much lower than  $P_A$ , and  $\tau_{\bf i}$  is extended above 100 µsec.) If the helium gas pressure in the expanded anode  $\overline{A_1A_2}$  space increases to  $P_A = 1.4 \times 10^{-3}$  Torr (an optimum pressure) by introducing a secondary helium gas from a port in  $\overline{A_1A_2}$ , the neutralization time  $\tau_{\bf i}$  is reduced

below 1 µsec.

A loss time  $\tau_{\ell}$  of the ionized ions along the magnetic field B is estimated by, if the radial loss time is longer sufficiently compared with the loss time along B,

$$\tau_{\ell} = x/v_{i} . \tag{6}$$

where x is a distance along B and  $v_i$  is an ion speed. the anode region  $\overline{A_1A_2}$  , we may take  $x = \overline{A_1A_2} \approx 16$  cm and  $v_i$  $\approx$  7.5  $\times$  10<sup>5</sup> $\sqrt{\rm V_i}$  cm/sec for He<sup>+</sup> ion. Then, if we assume V<sub>i</sub>  $\approx$ 1 eV (thermal), we obtain  $\tau_{\ell}(\overline{A_1A_2}) \approx 20~\mu sec.$  In the accelerating region  $\overline{A_1S_3}$ , we should take  $x \approx \Delta \ell$  (electron sheath length near the acceleration anode  $A_1$ ) and  $v_i \approx 7.5$  $\times$  10  $^{5}$   $\sqrt{\mathrm{V_{A}}}$  cm/sec, where  $\mathrm{V_{A}}$  is the anode voltage which accelerates ions backwards. For  $V_A \approx 400 \text{ V}$  and  $\Delta \ell << \overline{A_1 S_3} = 40 \text{ cm,}$ we obtain  $\tau_{\ell}(\overline{A_1S_3})$  << 3 µsec. A neutralization time  $\tau_{i}(\overline{A_1S_3})$ in the acceleration region near the anode A  $_1$  is  $\tau_{\,i}\,(\overline{A_1S_3})$   $\approx$ 3 µsec for 3.0  $\times$  10<sup>-4</sup> Torr and V<sub>A</sub> = 400 V. Thus, we can estimate  $\tau_{i}(\overline{A_{1}A_{2}}) > \tau_{i}(\overline{A_{1}A_{2}}) > \tau_{i}(\overline{A_{1}S_{3}}) >> \tau_{i}(\overline{A_{1}S_{3}})$  in a case of no gas introduction. That is, in the  $\overline{\mathbf{A_1}\mathbf{S_3}}$  region, ionized ions are lost quickly and supplied slowly. means a space charge limit. Experimentally, in a case of no gas introduction, a large electron beam current is not extracted as seen in Fig.6(A).

Obviously, for P $_{A}$  = 1.4 × 10 $^{-3}$  Torr (in a case of gas introduction into  $\overline{A_{1}A_{2}}$ ), we can estimate  $\tau_{i}(\overline{A_{1}A_{2}})$  <<  $\Delta t$  (pulse width) and  $\tau_{i}(\overline{A_{1}A_{2}})$  <<  $\tau_{\ell}(\overline{A_{1}A_{2}})$ . Therefore, by a back stream of ions from the  $\overline{A_{1}A_{2}}$  region to the  $\overline{A_{1}S_{3}}$ , the space charge of electron sheath is compensated quickly.

Thus, a large electron beam current is extracted up to the injected plasma source electron current (a flux limit) as seen from Figs. 6(C), (D) and (E).

Next, in the relation with the beam energy spread, the beam electron energy loss in  $\overline{A_1A_2}$  region must be estimated. Then, the beam energy loss is about 1 eV under P  $\approx$  1.4  $\times$  10<sup>-3</sup> Torr and  $V_A$  = 400 V, which is neglected for the beam energy. In the dc operation as shown in Fig.4, if the pressure in  $\overline{A_1A_2}$  is below 1.4  $\times$  10<sup>-3</sup> Torr, we find that the beam energy spread  $\Delta V_b/V_b$  in the final space  $(\overline{A_2A_3})$  is below 20 % for a beam energy  $V_b$  > 200 V.

In the accelerating region  $(\overline{A_1S_3})$ , a potential near the tube wall is much above the acceleration voltage of  $A_1$  electrode. The fact may be due to high energy ions which stream backwards from the anode region  $\overline{A_1A_2}$  as reported<sup>2</sup> in the dc operation already. The high energy ions may be scattered by the injecting cold ions through ion-ion collisions since the ion density is above  $10^{12}/\text{cc}$  in the present experimental conditions. On the other hand, obviously, the electron-ion collision mean free path is much longer than the accelerating region distance  $\overline{A_1S_3}$ . Thus, for the coulomb collisions, we may assume that electrons are collisionless and ions are collisional in  $\overline{A_1A_3}$  space.

We can expect a higher beam energy by increasing  $V_A$ , a larger beam current by increasing  $V_S$  and the primary dc discharge current  $I_d$ , and a longer pulse duration by increasing  $C_S$ ,  $C_A$  and  $C_B$  under an optimum gas introduction into  $\overline{A_1A_2}$  region.

In conclusion, by introducing a neutral gas into an expanded anode space, a long pulsed intense electron beam highly concentrated in the anode central aperture, is extracted from a pulsed plasma source which is based on a dc hollow cathode discharge, but has a fast rise time.

# Acknowledgement

I wish to thank Dr. K. Akaishi for valuable comments.

#### References

- M. V. Nezlin, Zh. Eksp. Teor. Fiz. 41, 1015 (1961);
   Sov. Phys. JETP 14, 723 (1962)
- J. Uramoto, Research Report of Institute of Plasma Physics, Nagoya University, Nagoya, Japan, IPPJ-237 (1975)
- 3. L. M. Lidsky et al., J. Appl. Phys. 33, 2490 (1962)
- 4. S. Komiya and K. Tsuruoka, J. Vac. Sci. Technol. <u>12</u> 589 (1975)
- E. G. Linder and K. G. Hernqvist, J. Appl. Phys. <u>21</u>, 1088 (1950)

### Figure Captions

- Fig.1(A) Ordinary Electron Sheath Method.
  - A: Acceleration anode. d: Central aperture.
  - $\Delta x$ : Electron sheath. E: Electric field.
  - (B) Direct Gas Introduction Method.
    - I: Plasma thermal electron current
    - I<sub>h</sub>: Electron beam current
- Fig. 2 New Method (Principle of Stable Neutralization).
  - A: Expanded acceleration anode. S: Plasma source anode. I<sub>s</sub>: Thermal plasma electron current. I<sub>b</sub>: Electron beam current. E: Electric field.
- Fig.3 General dependences of electron current I in plasma on applied voltage V.
  - (1): Plasma Resistance Type (Both electron and ion collisonal).
  - (2): Initial Flux Limit Type (Electron collisionless, but ion collisional).
  - (3): Space Charge Limit Type (Both electron and ion collisionless).
- Fig.4 Schematic of experimental apparatus in dc operation.
  - $S_2\colon$  Plasma source second anode (8 mm $\varphi$  in central aperture dia. and 8.0 cm in length).
  - [except S<sub>2</sub> and external circuits, same in Fig.5], see Fig.5.
- Fig. 5 Schematic of experimental apparatus in pulse

operation.

K: Ta pipe cathode.  $S_1$ : Plasma source first anode.  $S_2$  Plasma source second anode.  $S_3$ : Plasma source third anode.  $A_1$ : Acceleration first anode.  $A_2$ : Acceleration second anode.  $A_3$ : Acceleration third anode (Faraday Cup). B: Magnetic field. R: Charging resistance (500  $\Omega$ ).

Fig.6 Dependence of electron beam current  $I_b$  (to anode  $A_3$ ) and acceleration voltage  $V_b$  (voltage on  $A_3$ ) on anode pressure  $P_A$  (between  $A_1$  and  $A_2$  anode). t: time 500 µsec/div.  $I_b$ : 100 A/div.  $V_b$ : 133 V/div.

 $V_A$  = 400 V (voltage charging  $C_A$  and  $C_B$ ).  $V_S$  = 280 V (voltage charging  $C_S$ ).

- (A):  $P_A \le 2.1 \times 10^{-4}$  Torr. (B):  $P_A = 7.0 \times 10^{-4}$  Torr. (C):  $P_A = 1.4 \times 10^{-3}$  Torr. (D):  $P_A = 2.1 \times 10^{-3}$  Torr. (E):  $P_A = 3.5 \times 10^{-4}$  Torr.
- Fig.7 Dependence of electron beam current  $I_b$  on acceleration anode voltage  $V_A$  (charging voltage on  $C_A$  and  $C_B$ ).

I<sub>s</sub>: Plasma source current (between S<sub>1</sub> and S<sub>3</sub> electrode), 400 A/div. I<sub>b</sub>: 100 A/div. t: time 500  $\mu$ sec/div. V<sub>s</sub> = 280 V. P<sub>A</sub> = 1.4  $\times$  10<sup>-3</sup> Torr (between A<sub>1</sub> and A<sub>2</sub>). (A): V<sub>A</sub> = 100 V. (B): V<sub>A</sub> = 200 V. (C): V<sub>A</sub> = 300 V. (D): V<sub>A</sub> = 660 V.

Fig.8 Discharge mode (between source electrode  $S_3$  and all acceleration anodes  $A_1$ ,  $A_2$ ,  $A_3$ ).

 $I_{A3}$ : Discharge current to  $A_3$ , 400 A/div.  $V_{A3}$ : Voltage on  $A_3$ , 220 V/div. t: time 500  $\mu$ sec/div.  $P_A = 1.6 \times 10^{-3}$  Torr.  $V_A = 660$  V.  $V_S = 280$  V.

Fig.9 Current conservation between plasma source currents and electron beam currents.

 $\rm I_S\colon \ A$  plasma source (total) current between  $\rm S_1$  and  $\rm S_3$ , 400 A/div.

 $\Delta I_{\rm S}$ : A plasma source (by-pass) current between  ${\rm S_1}$  and  ${\rm S_2}$ , 200 A/div.

t: time 500 µsec.

 $I_B$ : A total electron current (to  $A_1$ ,  $A_2$  and  $A_3$ ), 100 A/div.

 $I_b$ : Electron beam current (to  $A_3$ ), 100 A/div.  $V_A = 400 \text{ V}, V_S = 280 \text{ V}, P_A = 1.4 \times 10^{-3} \text{ Torr.}$ 

Fig. 10 Potential Distribution.

 $I_b$ : Electron beam current, 100 A/div.  $V_p$ : Plasma wall potential, 133 volt/div. t: time 500  $\mu$ sec.

 $V_{A1}$ : Voltage on electrode  $A_1$ .  $V_S = 280 \text{ V}$ .  $P = 1.4 \times 10^{-3} \text{ Torr.}$   $V_A \approx 400 \text{ V}$ .

(A): Plasma wall potential near tube wall.

(B): Plasma wall potential near center.

(C): Potential of acceleration electrode  $A_1$ .

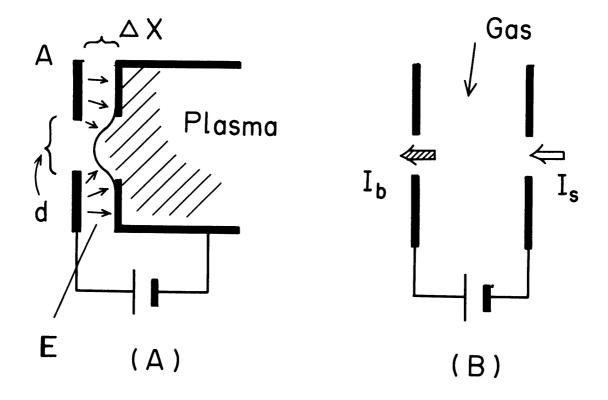



Fig. I

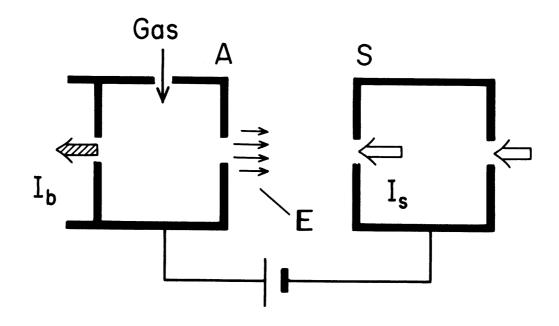



Fig. 2

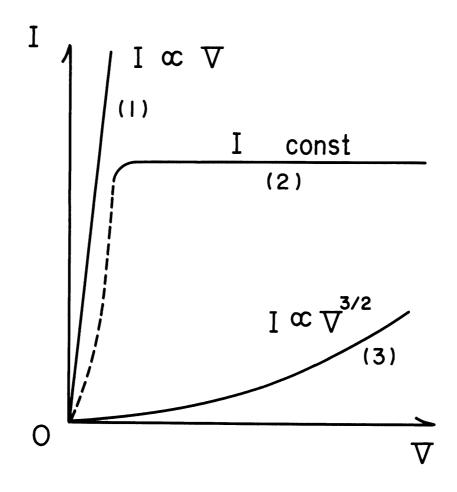



Fig. 3

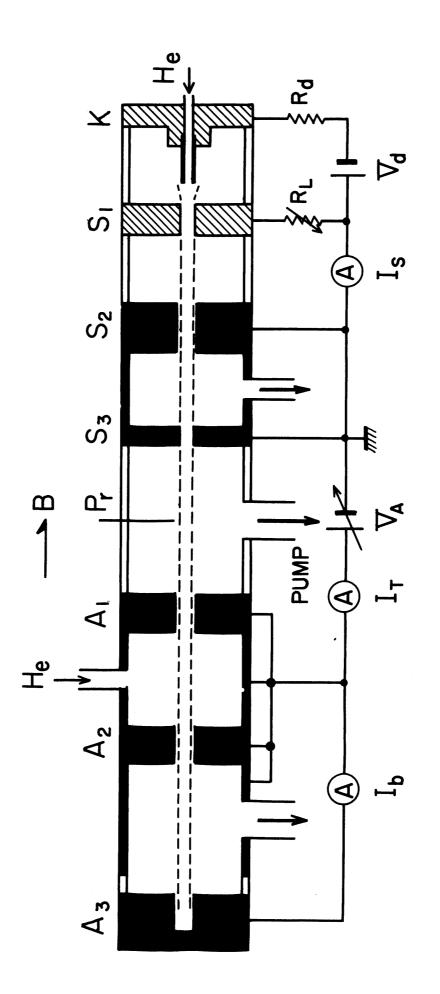



Fig. 4

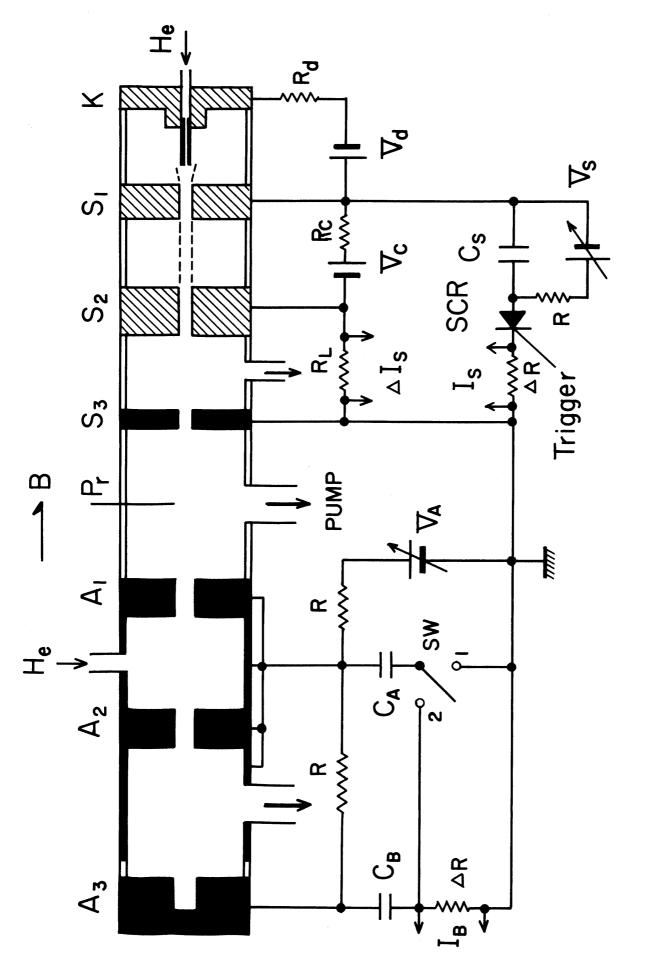



Fig. 5

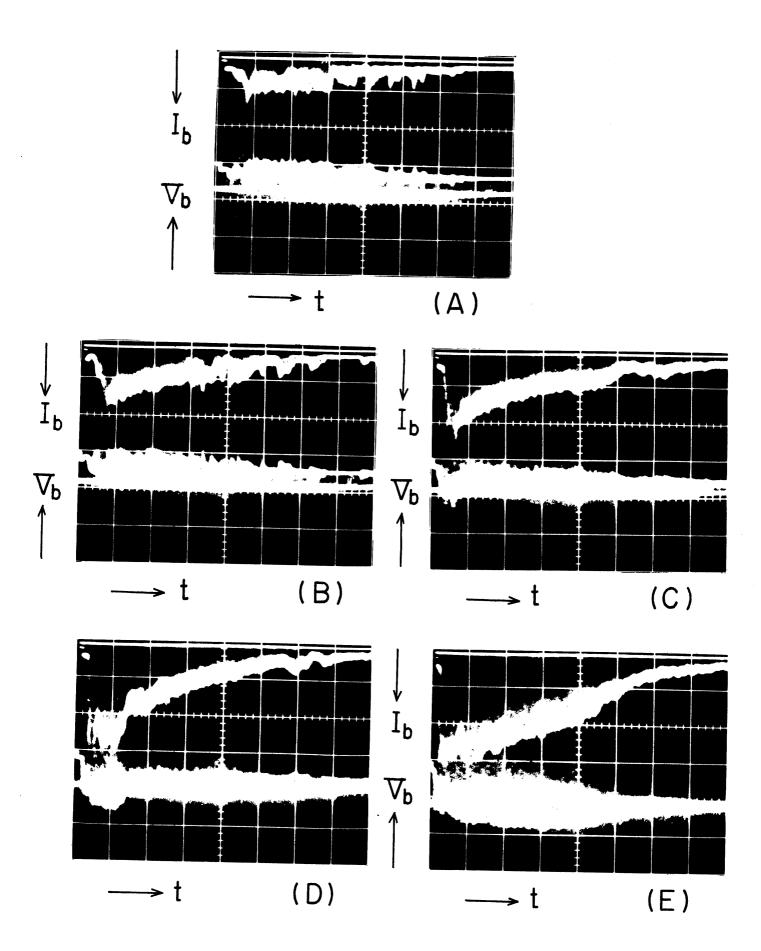
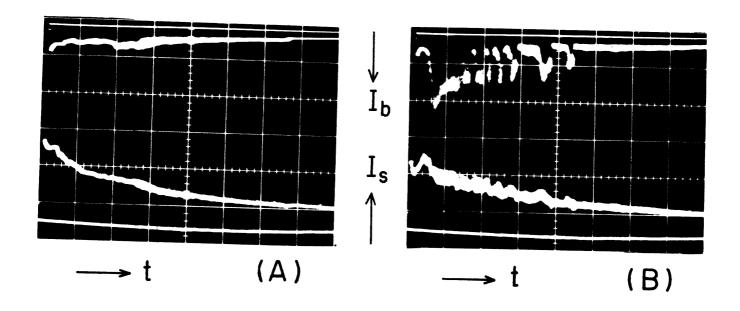




Fig.6



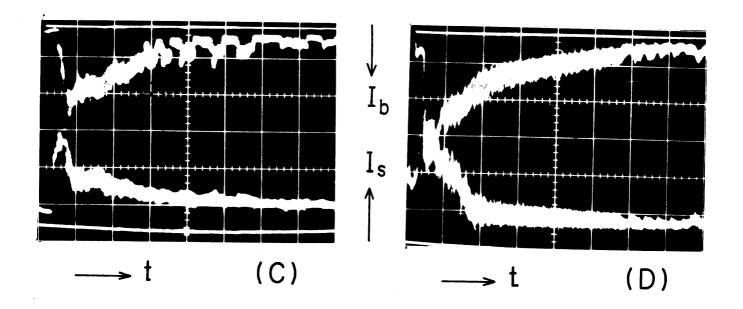



Fig.7

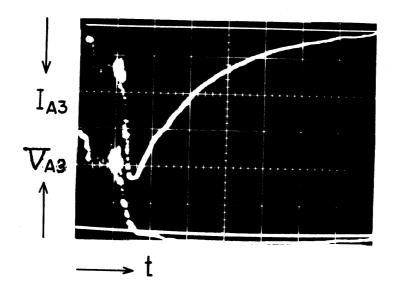



Fig.8

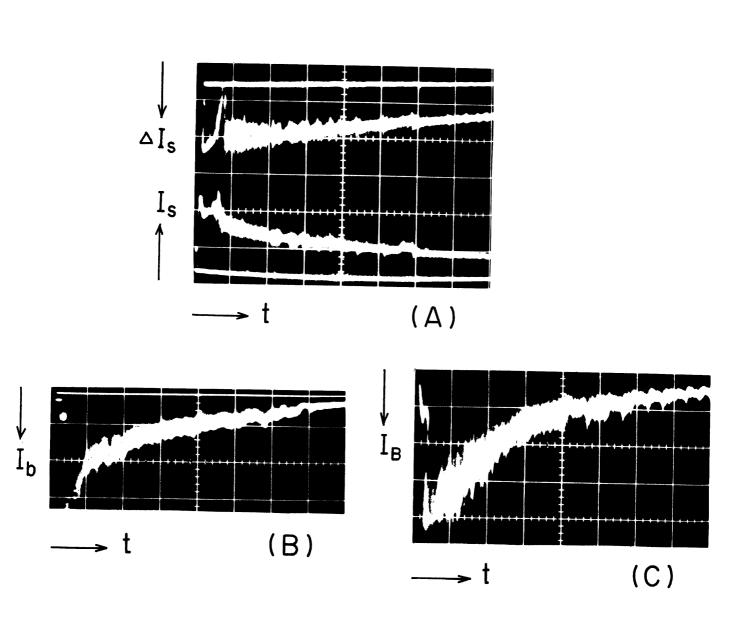



Fig.9

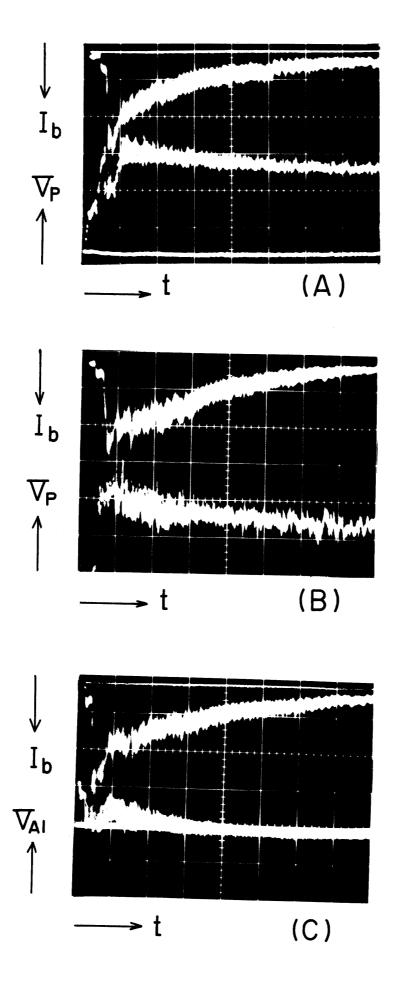



Fig.10