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ABSTRACT

The nonlinear evolution of an ion-acoustic wave packet
is studied. Experimentally we find that (i) nonlinear phase-
modulation develops in the wave packet; (ii) the phase-
modulation, together with the dispersion effect, causes expansion:
and breaking of the wave packet; (iii) the ions trapped in
the troughs of the wave potential introduce self-phase-
modulation, and (iv) the ion-acoustic wave is stable with
respect to the modulational instability. Computer simulations
have reproduced the experimental findings. The physical picture
and the model equation describing the wave evolution are

discussed.



I. INTRODUCTION

The nonlinear behavior of wave packets in dispersive
systems has received considerable theoretical attention.1 |
A kinetic theory,2 which considers the resonance at the
group velocity, predicts that the ion-acoustic wave is
unstable with respect to wave amplitude modulation, in con-
trast to the results of the fluid theo::'y._s"4 The studies
to be presented in this paper were motivated by the contradiction
between these two theories. We have found both experimentally
and by computer simulations, that the ions trapped in the
wave potential troughs introduce much larger effects. com-
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pared to the mechanisms discussed in the theories.””

Experimentally, we investigate a plane ion-acoustic

density perturbation of the form

bn= B(x,t)exp(ikox - lwyt), (1)

with the carrier wave frequency ) and the wavenumber

k The envelope n is a slowly varying function of space

Ol
x and time t compared to the carrier oscillation period.
Figure 1 shows the propagation of the wave packet for small
perturbed amplitudes. It 1s excited

at x = 0 by the signal shown in the top trace (only the



trace when wO/EW = 0.4 MHz is shown). The signals detected

at x = 8 cm (2nd through 5th trace) are delayed because of

the transit time of the packet. The wave

packet with larger @, (labeled at each trace) undergoes

a longer delay . This is expected since the group velocity is given
by v, = aw/ak|w=mo = c[1 - (wo/wpi)2]3/2. In this linear

regime, the envelope n is slightly spread out without

showlng any additional modulation.

The evolution of the shape and phase of the packet
when the amplitude is large is the subject of our interest.
The experiment described in the next section demonstrates
the nonlinear phase modulation. We will find that the
phase modulation causes broadening of the frequency spectrum
and wave packet breaking. The computer simulations
presented in Section III reproduce the experi-
mental results. In Section IV, we discuss the physical
picture of the wave evolution and phenomenologically derive
a model equation which describes the wave evolution. We
"will point out the importance of trapped-ion effects. The
results of the present work are summarized in the last
section.

ITr. EXPERIMENT

A. Apparatus and Conditions

The experiments were carried out in a double

plasma device.5 The details of the device,and the method
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of wave excitation are described in Ref. 5. The typical
density of the argon plasma ny = (0.5~+5) x 102 em™3 is
obtained at an argon pressure p = (1~ 2) X 10’” Torr.
The electron temperature Te is controllable in a range

from 0.5 eV to 3 eV. The Langmuir probe curves in Fig. 2

showing changes in Te are obtained by regulating the

discharge current ratio between the poorly conductive

chamber wall and an additional metallic electrode which

absorbs high energy electrons.6 The ion temperature,

Ti = 0.1 eV, is observed by an ion energy analyzer. It is
roughly independent of the changes in Te' We have also obtained

Ti from measurements of the Landau damping of the ion-acoustic
wave. We will use this Ti in analyzing experimental data

when dealing with the trapped ion effects. The diameter of the

wave front (30 cm) is much larger than the wavelength (a
few mm). We have confirmed that the propagation and
damping of the ilon-acoustic wave in our device is well

described by the dispersion relation7

1+ (k5/%) [1 - (1./2T,) 2" (w/kvy)] = O. (2)

when the amplitude is small.
B. Results

We first observe the behavior of the amplitude-

modulated wave

n(x = 0,t) = ny(l+e cos w t) , (3)
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launched at x = O in the positive x direction. The
carrier frequency is chosen to be in the dispersive
regions; wo/mpi = 0.6 in Fig. 3. The second trace of
Fig. 3(a), show, the electron density perturbation
(perturbation of the electron saturation current to a
probe) detected at x = 1 cm. It indicates the same waveform
as the wave excitation signal shown on the top trace.
The corresponding frequency spectrum, shown in Fig. 3(b),
has both upper and lower sidebands due to the amplitude
modulation described by Egs. (1) and (3). The notabie features
are that (i) the carrier frequency 1s modulated as the
wave propagates. The frequency decreases at the rising
part of the envelope amplitude and increases at the falling
part. (ii) After the frequency modulation becomes signi-
ficantly deep, so that the frequency spectra broaden
[see Fig. 3(b)], each wave packet expands; the amplitude
modulation disappears and frequency modulation is left at
large distances. When the amplitude is small (Brl/ho,s 0.001),
the frequency modulation is not observable.

The spatial evolution of carrier and sideband
amplitude is shown in Fig. 4. The small-amplitude wave
damps by Landau damping rate. When the initial amplitude 1is
large, the carrier wave damps much faster than the Landau
damping rate and higher-order sidebands successively grow.
The curves labeled by -1, -2, -3,... indicate the amplitudes

of the first, second, etc. lower sidebands appearing at the
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frequencies W =Wy, 2 wo~2wm, etc. The upper sideband amplitudes
are labeled by 1, 2, ... . We take notice of the fact that
the nonlinear frequency modulation transfers energy between waves.
The damping rate of the total energy is much
smaller than the Landau damping rate, indicating that the
Landau damping disappears when the wave amplitude is large.
The dips in amplitudes appearing at x = 3 cm in Fig. 4(a)
are caused by the bounce oscillations of the trapped ions.8
From the observations of the space-time evolution of a wave
packet, we have confirmed that the bounce period depends
on the local amplitude of the wave packet. Namely, the dip
of the large amplitude part of the packet takes placé-at a
shorter distance than the dip position of the smaller
amplitude part. Although one needs to show a series of
many waveform traces in order to present this feature, the
upper few traces of Fig. 8 give us an indicaﬁion of the effect.:
The flattened wave packet (2nd trace) obtained at the.dip
position of the large-amplitude part turns out to be peaked
up at the center. This observation indicates that the
trapped ion effect is localized compared to the scale-
length of the wave packet. It is, of course, nonlocal over
a carrier wavelength.
The energy analyzer measurements show that the
trapped ion density ng is a steep function of Te/Ti and

3

easily reaches 5x10~ Ngs which is an appreciable fraction
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of the wave density perturbation &n S 0.1 ny. The
9

presence of any light-mass ions greatly enhances nT.

We now separate the amplitude lﬁl and phase f

of the wave packet as
n(x,t) = In| exp(if) , ()

and measure 0 as a function of x and t. 1In order to
separate the slowly varying part exp(i@) from rapidly
oscillating part exp(~iwot) in the detected signal 5n,

we sample the signal at discrete times t, = (2mt/wg) + by,
where ¢ stands for integers, and the time delay td is a

controllable constant. We then have a signal

6n (x,t,) = |5(x,t&)| exp[i(Q—thd+kOx)]. (5)

Note that the factor exp(—iwot)‘disappears from (5).

The traces in Fig. 5 showing thesersampled
signals are obtained simply by imposing periodic pulsed
intensity modulation on the oscilloscope traces. The
intensity modulation is synchronized to the oscillator
generating carrier wave signal. On the second trace
obtained at x = 2 cm, we have adjusted td so that the phase
factor in (5) equals zero at the maximum amplitude position.
Because we do not have much phase shift at this small distance,

the trace depicts dn ~ [¥]|. The sampled signal 6n(x,ti)oscillates

at large distances. One oscillation of this signal corresponds tc¢



a change of 6 by 27. We adjust t, in such a way that

d

6 - wotd + kox = 2m(integer) and, then, find @ from the

known td. The measured 0 is plotted in Fig. 6. The
phase € is proportional to x at given t - x/'vg and has a
functional form similar to the amplitude profile. We

therefore express the phase as
e = ok(|n])x. (6)

The measurements of Bk as a function of amplitude
and Te/Ti are summarized in Fig. 6. The dots, showing

experimental points, indicate that Bk o |?1|1/2

when Te/Ti
~ 10. At larger Te/Ti’ Bk becomes small and dependence

on IEI deviates from square root relation. By introducing
helium ions into the argon plasma we have found ©k to

increase. As we will discuss in Section IV, these experi-

mental results strongly suggest that it is the trapped ions

which induce the nonlinear modulation.

A single large-amplitude wave packet breaks
into two wave packets as we see in Fig. 8. One of the
separaﬁed wave packets has a lower carrier frequency, and
propagates faster than the other one which has a higher
carrier frequency. The difference of the propagation
speed is large when the amplitude is large. The packet

does not breakup when the amplitude is small.



ITTI. COMPUTER SIMULATIONS

A. Model and Parameters

We have carried out numerical simulations of
the experiments in order to determine the role of the trapped

ions. We make use of the set of equations

n

s exp (’q(P‘ P 7

of , yof %% of _ 0, (8)

ot ox v

e ey .

8x2 = om ie’? (

3P

E = - —x 10
. (10)

Here, it is assumed that the electrons obey the
Boltzmann distribution (7). We employ a hybrid solution

algorithm originated by Denavitlo in order to follow the

ion dynamics described by (8). The simulation particles

(cloud in cell modelll) distributed on grid points

(xi,v.) in the phase space have mass and charge which are

J
proportional to the initial values of the distributions
f(xi,vj). The particlesmove along the characteristics of
(8). After particles have moved, a new f(x,v) is calcu-
lated from the locations and the mass of the particles.

We use implicit iteration scheme'® to find E from (7),

(9), (10), and n; = fdvf . A periodic boundary condition is
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imposed. We have used the total energy,

2
2 ’" E
e =% J, dxdv fv +J dx ( g- + ene¢) + const, (11)

to check precision of computation.

The mesh sizes of grid in the phase space, AV
are chosen to be 64 < L/Ax < 256 and 180 < 13vT/AV < 280,
where L is the total system length and v

T
velocity (Ti/M)l/E. The time step At is chosSen to be

the ion thermal

wpit = 0.2, The distribution f is finite in a region
-5 < v/'vT < 8, and is zero outside this region.
The beaming instability'S due to the multi-stream

distribution employed here is stabilized by recon-

structing the distribution function before the instability

growsclo_ We usually reconstruct the distribution ten times

in each run.

We solve the initial value problem, in the
computer simulations in constrast to the spatial wave.
evolution observed in the experiments., We start the

simulation with the initial value

f(x,v) = - (1t+a) exp o evy) J
V) = e e) e | - o [

with the wave packet perturbation given by
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[1 - ecos (kx)] cos (kgx). (13)

We use an approximate phase velocity v2

= (T /M) [3Ti/Te-+1/(1+k2A%)]. The modulation wavenumber
km = (27/L) is one-tenth of the carrier wavenumber ko.
We have tested linear dispersion relation by setting
€ = 0 and a = 0.001. The result is in good agreement
with linear theory.ll
B. Results

We first show the evolution of a modulated wave in
Fig. 9. The waveforms are plotted in the ion-acoustic
frame, i.e., the abscissa is x - cst. The wave packet
slowly moves to the left because the group velocity is
smaller than Cgqe In contrast to the small amplitude wave
(ao = 0.0025), which only Landau damps, the large ampli-
tude wave (a, = 0.05), shown in the left column, evolves
in the following way: First of all, the amplitude becomes
minimum when wpit = 15, especially at large amplitude part
so that the packet flattens. The ion distribution plotted
in the phase-space shows that the ions in the trapping
region, Vv, - (e || /M)l/2 <v vy F (4elwl/M)l/2, are
accelerated by the wave field and gain maximum energy when
wpiﬁ = 15 (see Fig. 10). The ions almost uniformly distri-

bute along the trajectory in the trapped region after

wpit = 30. Secondly, the wavenumber modulation becomes
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clear after wpit = 50, The wavenumber decreases in the
‘front—part of'the packet and increases at the packet
tail., Thirdly, the wave packet flattens as the wavenumber
modulation appears to be deep. All these features are
exactly the same as the experimentally observed properties
found in Fig. 3.

The above wavenumber modulation creates sidebands,
and the wavenumber spectrum broadens as shown in Fig. 11;
in contrast to the spectrum of the small amplitude wave
(ao = 0.0025) which does not broaden. We already have
seen the same behavior of the spectrum in Figs. 3 and 4.

We have measured the phase 6 defined by (4) as

a function of x, t, and the wave amplitude and have found

that 6 is expressed by
6 = dw (|n])t, (14)

at a given x - vgt. This result is obtained by assuming
that the shape of |fi| does not change. The nonlinear
frequency shift 6(9/&0 measured when Te/Ti = 15 and 20
is plotted in Fig. 7. Note that 6w is negative and
|[6w | & Iﬁll/e. The value of -bw/w, agrees with the
experimentally found tk/k, for the same T_/T; and |h]| .

It is a steeply decreasing function of Te/Ti. We could

barely find modulation when Te/Ti = 30,
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We also have obtained the nonlinear frequency
shift 8w’ of the unmodulated (monochromatic) wave from
the measurements of the phase velocity (wy+dw’)/ky. We
again find that ~am'/mo, plotted in Fig. 7, is proportional

£o l'ﬁll/Q

and a steep function of Te/Ti' As we will see
in the next section, two frequency shifts &w and &w'
measured by different methods are essentially the same

quantity. The value of -6w‘/w0 is about 15% larger than
—Gw/wo when the amplitude is not very large. This
difference between dw and dw' is, however, rather
surprisingly small, if one thinks about the complication
of trapped ion orbits in the modulated wave.

IV. ANALYSIS

A. Physical Picture and Model Equation

We have found following three features of iarge
amplitude wave packets in both experiments and numerical
simulations:

(1) The carrier frequency (wavenumber) is modulated
as the wave propagates. The frequency (wavenumber)
decreases at the wave packet front and increases at the
tail.

(ii) The rate of modulation is proportional to

|ﬁ|1/2 and a steep decreasing function of T_/T..
e’ i
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(1iii) The wave packet tends to expand after above

modulation becomes significantly deep.

We interpret the first feature - the modulation -
as a consequence of the amplitude~dependeht phase velocity.
We consider a wave packet schematically depicted in Fig. 12.
Suppose the phase velocity vp of the large amplitude wave
is smaller than the small-amplitude phase velocity. Then,
the phase at point B in the figure moves more slowly than
the phases at points A and C. As the wave propagates, the
wave pattern is compressed between the points A and B and
i1s stretched between B and C, as in the second trace. This
is the modulated wave we have seen in Fig. 8. Because the
wave propagates from left to right, the probe first picks
up smaller wavenumber part which appears to be lower
frequency part; then the larger wavenumber part, which
gives rise to the higher frequency part is detected. This
is the waveform shown in Figs. 3(a) and 9.

Let us analyze the above mechanism in more detail.
We launch purely amplitude-modulated wave at x = 0. As
‘we have found experimentally [see Egs. (1), (4), and (6)1,

the wave perturbation,matching this boundary condition,is

on ~ X . : : .
a = n, - a(t - E)exp[m(ky-ﬁk)x-iwot], (15)
where Bk is a function of x and t through |&|. We have

neglected damping. Deformation of a is to be discussed
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later. The frequency of the carrier then becomes

0Bk alal (16)
0 dla]  dt

The second term gives us nonlinear frequency modulation,
which is proportional to x. From d8k/d|a| > O (see

Fig. 7), o decreases when d|&|/dt > O and increases when
d|a|/dt < 0 in agreement with the waveforms in Fig. 3.
Because of Vp = wb/(k0+6k) and d8k/|a| > 0, the large-
~amplitude wave propagates more slowly than the small-
amplitude wave, Jjustifying physical picture shown in

Fig. 12.

One can use a similar argument for the initial

value problem, and find an expression,

a = b(x-v t)exp[i(kox~w t-Swt)] (17)

g 0

which describes the wavenumber modulation appearing in the
simulation.

We can easily show that (15) is a solution of

(e %

. )
; a“f*ia):"ﬁk("”w , (18)

where V¥ is defined by

a = W(X,t)exp(ikox~iwot) . (19)
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We can also show (17) be a solution of

(3 f

i( Ly ¥ ) = dw(|v])v. (20)
ot & dx

Since the difference between (15) and (17) comes only from

the boundary and initial conditions, (20) must be identical

with (18), so that dw= - v_bk. We therefore have

g
Bw/mb = - (vg/vp)(ﬁk/ko)ri - 6k/ko, because,vgfl vl'in the

p

ion acoustic wave. Figure 7 confirms this relation, indi-
cating that the simulation results quantitatively agree
with the experimental results except for differences
appearing in a range lﬁl/ho,e 0.05.

After the carrier modulation becomes deep, so
that the spectrum broadens, we need to take into account
the group velocity dispersion; vg(k) = Vg(ko) + % (a%b/Bke)Ak:,
where Ak 1is the shift of carrier wavenumber due to the modu-
lation. Because ng/akg < O for the ion-acoustic wave, the
group velocity at larger wavenumber (frequency) is smaller
than vg at smaller wavenumber. Figure 12 shows the con-
sequence of this effect. The envelope in the region B-C
of the second trace moves faster than the envelope in the
part A-B where the carrier wavenumber is larger. As a
result, the envelope expands and flattens as shown in the
third trace. If agm/akg > 0, although this is not the case

of ion-acoustic wave, then the wave packet would shrink

and peak up at the middle of the packet, i. e., one would
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have a modulational instability. We now conclude that
the ion-acoustic wave is stable with respect to the
modulational instability.

We consider the linear dispersion relation
w = w(k) or k = k(w) in order to add the above group
velocity dispersion effects to our model equations (18)
or (20). We have broadening in o and k around (®g,kg),
because of space and time variation of V¥(x,t). We-write'
this broadening as k =,k0 + Ak and @ = Wq + A and expand‘k

in a series of Aw up- to Aot Using k, = k(wy), Mo¥ =

idv/dt, and AkY = - 10V¥/90x, we find
: 2 2
oV 1 oY 1 0k 0¥
ov , L v _ L 9¥ _ o. 21
ox Vg 3t 2 duf ot? (21)

The last term of (21) represents the modification of wave
packet due to the above mentioned group veloclty dispersion.

We replace left-hand-side of (18) by (21) and obtain

(3w, 1 a) 3%y (22)
i{ —+==— )+ p—5+ 8k Yo = 0,
d3x Vg dt 3t° v
where,
2%k 3%

%
=
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We also obtain

2 - |
. dv aw> >y |
il —=+v, = )J+a—7--8w(|¥|)y =0, (23)
ot B 3x a2
with 5
~low_ _ 3 - -
a =i 6k2 = vg p and dw = vgak
in the same manner. The transformation,
S=t-‘5§“,. €=X, (24)
g
yields (22) to be
i oY + p égg + okv¥ = O, (25)
o€ os ' ‘
and
y =X - v,t, =1 (26)
yvields (23) to be
. dy 3%y .
i—+a - bwy = 0. (27)
ot e .

The nonlinear Schrodinger equations (25) or (27) are now
supposed to describe the observed wave evolution provided

the nonlinear coefficients &k and &w have functional forms
given in Fig. 7. When |¥| is not vefy large and Te/Ti,S 30,
we have found that &k o« - &w « |11/|1/2 . Equation (25) is

suitable for analyzing the boundary value problem, and (27)

for the initial value problem,
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B. Trapped-Ion Effects

Before studying the properties of (25) and
(27), we need to discuss the principal process causing
the nonlinear frequency or wavenumber shift. The
dependence Bk < lel/g strongly suggests that the particles
trapped in the troughs of wave potential play an important
role. The fact that 8k is a steeply decreasing function

of Te/Ti[ = (co/kv.l)l/e]

indicates that the trapped-ions

are the source of nonlinear effects, because the density

of trapped ions is a steeply decreasing function of w/kvi.
Because vp is not much different from vg in the case of the
ion-acoustic wave, the lifetime of the potential troughs

is much .longer than the ion bounce time g = (M/|etp|k§)1/2
under our experimental parameters. We have found by the simula-
tion that each period of the carrier wave reach a nearly

1oca1 equilibrium state by trapping ions after an initial
amplitude oscillation.

Several authorslu"l7 have calculated the nonlinear
frequency shift &w due to trapped electrons to discuss non-
linear electron plasma waves. We use their result to
estimate &w for the ion-acoustic wave due to trapped lons
by simply replacing the electron distribution by the ion
distribution and introducing ion contribution to the .

dielectric function. We then have
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3

I'v? ¢

Bk Bw ” 1/2

Ko = v T v o (vp)IY 2, (28)

where fg(vp) is the second derivative of the ion velocity
2

pr C = (To/M)2, ang

[¥] = |n|/ny. The numerical factor I', which depends on

14-17

distribution evaluated at v = v
the method of calculation and has values 0.7 < I' ¢ 1.8,
is here choosen to be I' = 1. We also set vg.z vp = ¢4 and
plot (28) in Fig. 7 for a few different values of T, /Ty
The theoretical prediction (28), made for monochromatic
wave, agrees with experimental and computational results
which are measured for both modulated and monochromatic
- waves, indicating that one can treat the phase velocity
shift due to the trapped particles as a'local.effect as
long as the scale length of the wave packet is much longer
than the carrier wavelength.

We should note that Eq. (28) is obtained by
- expanding the velocity distribution in a series of
vtrvp/vi s where v,  1is the trapping velocity (4e¢/M)1/2.
Therefore, (28) is only valid when |¥| = |r~1|/nO < (Ti/Te)e,
which is a range below the experimental and computational
amplitude level. It is surprising that all frequency or

18-20
a

wavenumber shifts, found in the experiments nd

. . 21 . . .
simulations of the monochromatic ion acoustic and
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electron plasma waves, including our results, agree with

l'\.v
Recently KJ‘.m22 has calculated Bw to a higher order

(28) even when vtrvp/v? > 1.

of vtrvp/vg . He has found that &v decreases and changes
sign at large amplitude. This zero crossing of &w is

found in our simulations of the monochromatic waves when
Te/Ti =~ 30 (see Fig. 6). 1In contrast to theory and simula-
tions, our experimental results and the results of the
electron plasma wave experiments obtained by Vidmar,
Malmberg and Starkel9 indicate that Sk/ko increases more
rapidly than ok « \W|1/2 for larger amplitudes.

We now discuss the behavior of the trapped ions
in further detail by considering ion orbits in the phase
space depicted in Fig. 13. If the ions are deeply trapped,
namely the ion distribution f is large in the region A
in the phase space, then the trapped ion density 1is high
at the bottom of the potential trough. In comparison with
linear theory, these bunched ions weaken the wave field and
decrease the phase velocity so that one has bw < 0. In
contrast the marginally trapped ions in the region B stay
longer at the top of the potential, strengthen the wave
field, and cause positive tw. The width of the region
B must be very narrow, because even the trapped ion distri-
bution plotted in Fig. 10 bring about negative btw. We

are now able to account for zero crossing ©of dw. The
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marginally trapped ions can be created, when both Té/Ti
and ¥ are large, so that vp/'v:.L and vtr/vi are large,
because the lower velocity end of the trapping region
reaches the steep Maxwellian tail of the ion distribution
as shown in PFig. 13. - If vp/vi or vtr/v:.L or both

are small, then deeply trapped ions are created.

Because the velocity width, Av, of the marginally
trapped distribution is very small compared to the thermal
velocity, the ion-ion collisions easily destroy such a
narrow distribution.23 If we employ the Fokker-Planck
model

v

2
. > i
at = Vi ™ (vf + =

a1
v

(29)

(0¥

then the life time of the distribution becomes
Ty ~2(&v/v;)?V]L . From the similation results, we estimate
Av/vi to be about 0.2. Now T, becomes only 10 wsec which
is shorter than the ion bounce time. We therefore con-
clude that the narrow distributions causing positiVe
6w can rarely be formed. The discrepancy between experi-
mental and simulation results arise from the fact that the
silmulations are based on the Vliasov model.

We note here that the nonlinear term associated

3,4

with wave-wave coupling is estimated to be more than

an order of magnitude smaller than observed |6k| or

|6w| at T /T, = 30 when [¥] £ 0.1. The trapped electron
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ef‘fect,24 which was considered to turn 8k to be negative,
did not appear.

C. Numerical Solutions of Model Equation

To test how well our model equation describes
the observed wave evolution, we solve (28) numerically.

We employ an approximate wavenumber shift

ll/2

gk = ql|v , (30)

and use the boundary condition (3). In Fig. 14, we show
the spatial evolution of the amplitude |¥| and the phase
6. The numerical values of parameters are given in the

caption. The phase is expressed by € = q|W|l/2x and ]w[
does not change much when the distance x is small. The
amplitude tends to flatten at large x. All these features
are consistent with our observations .

A discrepancy appears in the evolution of the

phase occurring around the minimum amplitude point in
the boundary value. In contrast to the experimental wave-
form developing a frequency Jjump (a jump of - 9/3t) [see
the bottom trace of Fig. 3(a)l, the phase found in the
numerical solution becomes smooth at large x by emitting two
solitons. ﬁ; should note that our model equation 1s not
valid when (1) the amplitude is too small to have trapped
ions within the experimental extent of time, and when (i1)
the variation of envelope (d¥/dy)/V¥ is comparable to the

carrier wavenumber ko, because the trapped ion effects are

nonlocal over a carrier wavelength.
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D. Wave Packet Breaking

We now discuss. the properties of (27), which is
related to the wave packet breaking shown in Fig. 8. We

employ an approximate frequency shift (

o = Blv|2 . (31)

Following Ref. 25, we write ¢ in the form

1 :
v = p_z-eXP <1f oy ), (32)
2a

where p and o are real functions of y and ¢. We sub-

stitute (31) and (32) into (27) and obtain

%+ 2 (po) = o, (33)
a'r by
and
. 1 1 N\
99 , ¢ 99 _ _ 2aBp-% o , 429 [p—é 9 ( -3 9p )1
dt dy oy oy oy oy 7
(34)

The set of equations (33) and (34) is very similar to the set of

hydrodynamic equations if one replaces p and o by.the

density and the velocity of fluid. Therefore one may ﬁse

the arguments of the one-dimensional gas dynamics.26
We first consider a slowly varying waveform, so

_that the last term in (34) can be neglected. We, then,

immediately find that the sign of af corresponds to the
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sign of "temperature". If ap < 0, then we have negative
"temperature" system, meaning that the wave packet ié
unstable. Our observations indicate that a ¢ 0 and B < O,
so that ap > O.

One may easily find the Riemann invariants

J, = 0% 8(20@9%)1/2 (35)

+

to satisfy

1
{ 9 + [o ¢ (2a6p“)1/2] 2 } J, = 0. (36)

T oy -
The perturbations propagate along the characteristics
defined by

1
& ox (2ope™)? (37)

The breaking of the wave packet shown in Fig. 8 corresponds
physically to the expansion of gas into a vacuum. Figure

15 illustrates the evolution of p following (33) and (34).
The characteristics cq and Co have positive sign and c3 and
cy have negative sign in (37). Note that cq and Cy indicate
trajectories of compression front and Co and 03 show
rarefaction trajectories. We find that a single

humped p profile breaks into a double hump. The relative
‘velocity of separated packets is mainly given by the
difference in o. The large amplitude wave attains large

o, which is proportional to the wavenumber modulation, in
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a short time. The packet movingAin the positive y-~direction
has o > 0 and the one in the‘negative direction has o < 0,
The second term.of (37) has a weak dependence on p.

We find from (36) that the small perturbations
around ¢ = 0 and p = Po = const. propagate in both positive
and negative y-directions with the velocity u, = * (QaBpg)l/Q.
Taking the third order derivative term in (34) into account
and following the prescription described in Ref. 25, we .

obtain the Korteweg-deVries equation

~ ~ 15u ~ 3~
o +u, 9P = P op , o7 97 _ 0, (38
3t T3y 8p, dy 2u, o3 )

which describes the evolution of perturbation p=p - Po-
This equation predicts envelope steepening and the forma-
tion of "dark" envelope solitons (the amplitude decreases

at the soliton position)?Y'One also can derive stationary
soliton solution directly from (27) and (30). We can observe
the soliton formation in our experimental extent of time

1)

(v 200 ay

details of the experimental observation of solitons are to

i1f we choose proper initial conditions. The

be described in a forthcoming publication,

V. CONCLUSIONS

We have found experimentally the following

features of large amplitude ion-acoustic wave packet:
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(1) The amplitude modulated waves develope self-

frequency or wavenumber modulation.

(i1) The self-modulation together with the dispersion
effect causes the wave packet to expand and to break into
two packets. The ion-acoustic wave is stable with respect
to the modulational instability.

(iii) The self-modulation is proportional to the squgre
root of the wave amplitude and is a steep function of the
electron to ion temperature ratio, indicating that the
trapped ions play a crucial role.

(iv) The wave-wave coupling process discussed inm the
most theoretical papers turns out to be minor effect. Our
computer simulation has reproduced all above experimentally
found features. It discloses existence of trapped ions
when the self-modulation appears. We have shown that the
combination of amplitude-dependent phase veloclty and
group velocity dispersion accounts for the wave evolution.
We have phenomenologically derived a model equation, which
takes into account both trapped ion and dispersion effects.
The model equation accounts for the wave packet breaking
and suggests that ion-acoustic dark solitons will be
formed.
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Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

FIGURE CAPTIONS

Electron density perturbation versus time, showing
propagation of small amplitude wave packet at
various carrier wave frequencies @y - The wave
signals are detected at x = 8 cm. The wave
excitation signal, only for wo/2v = 0.4 MHz is
shown. The wave packet shape of the excitation
signal is kept unchanged.

Schematic of experimental device and Langmuir
probe curves showing change of Te.

(a) Electron density perturbation versus timé
with distance from the wave excitation points

x as a parameter. Arrows indicate delay of

signal due to wave packet propagation.

(b) Frequency spectra of the waves shown in

(a).

Spatial amplitude variation of carrier and side-
bands. m indicates component at the frequency

Wy + M. (a) Large amplitude case. (b) Small
amplitude case;

Sampled signal on(t = EW'L/&b) showing phase shift
in n. wp/em = 40O KHz, w;/2T ~ 1 MHz, T/T; = 13,

1

k. = 15 cm .

0
The envelope amplitude |ﬁ| and phase 6 as a

function of time t - (x/vg) with the distance x
as a parameter. w,/2T = 400 KHz, wpi/EW = 1 MHz,

_ _ -1
Te/'I'i = 13, ko = 15 cm .



FC-2

Fig. 7 Nonlinear wavenumber shift 6k/ko (experimental and
theoretical) and frequency shift -6w/ub (simulation)
as a function of (Iﬁl/ho)l/Q. Dots are experi-
mental polnts; circles and triangles the simulation
results for modulated and monochromatic waves.

Solid lines show Eq. (28). The ends of solid
lines indicate vtrvp/vi = 1.

Fig. 8 Wave perturbation versus (x/vg) - t with
distance as a parameter. w /2n
= 500 KHz, w, /21r~ 1 MHz, T /T ~ 15, c

S
1. 7><105 cm/sec

Il

Fig. 9 Evolution of periodically modulated wave obtained
by computer simulation. Two modulation periods
are plotted in the ion acoustic frame. ko/kD== 1,
T,/T; = 20, (a) ap = 0.05, g = 1 [see Eq. (13)].
(b) ag = 0.0025, g = 1.

Fig. 10 The ion distribution, f, in the phase space.
The equi-f contours are plotted. The contours

are defined by log(f/fmax) = 0.24), where j =

0,1,...,10, and fmax is the maximum value of
unperturbed distribution. The bottom curve in

each diagram indicates f = fmax and the top trace

shows £ = 0.004 fmax' The parameters are the same

as those in the case of Fig. 9. Two packet periods

are plotted.




Fig. 11 The wave number spectra. The parameters in (a)
and (b) are the same as those in the case of
Fig. 9(a) and (b) respectively.

Fig. 12 Schematic of wave evolution.

Fig. 13 The relation between wave potential, trapping
region in phase space and ion distribution.

Fig. 14 Numerical solution of Eq. (25). q = 0.1
(T /Ty = 15). wo/a)pi = 0.45, a)m/(no = 1/15.

Fig. 15 Characteristics and amplitude profile in y-¢ plane.
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