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Abstract

A nonlocal phenomenological equation is introduced for a
multicomponent fluid where chemical or nuclear reactions are
taking place. The reciprocity between the nonlocal linear-
coefficients is examined closely. An approximation reduces the
nonlocal equation to the ordinary phenomenological relation with
correction terms which show clearly a coupling of the reaction

with the diffusion and the thermal conduction in an isotropic

system.



1. Introduction

. . . 1 .
As was pointed out in a previous paper ), thermodynamic forces
of scalar character may drive vectorial fluxes even in an isotropic

system. Therefore, the chemical reaction does couple

thermodynamically with the diffusion, a result which will explain

the phenomena of active transportz) observed in living organisms.

Such a coupling is due to a nonlocal phenomenological relation3)
between the forces and the fluxes.

In the present paper, we examine the reciprocity between the
nonlocal phenomenological coefficients. The system to be
considered is a multicomponent fluid where chemical or nuclear
reactions are taking place. We assume that the system is isolated,
and that all the components in the system have a common temperature.

The following two sections summarize several concepts
necessary to derivation of the phenomenological equation4). In
Section 4, the forces and fluxes are defined, and a linear
Phenomenological equation is introduced inthe nonlocal form. The
reciprocal relation between the nonlocal coefficients is obtained
in Section 5. The final section treats of a local approximation
to the nonlocal equation.

The concept of nonlocal coupling may be applied to the
phenomena of energy and particle losses from thermonuclear fusion
devices as well as the active transport. Examples will be
given elsewhere of the effect of reactions on the vectorial

phenomena.



2. Conservation laws

We consider a plasma or an electrolyte solution where
nuclear or chemical reactions are taking place. The total
energy of the system consists of the internal energy and kinetic
energy of the fluid motion. If conservative forces such as
electrostatic force are present, we include their potential
energies in the internal energy. The differential of the total

energy density u* is given by3)

du* = du + Zd(-—;_*— miniviz), (2.1)

where u is the internal energy per unit volume, and m;s Ny and
A denote the mass, the number density and the velocity of the
fluid motion of the component i, respectively.

The first law of thermodynamics can be expressed in a local

form as

[ ]
u* + div gq* = 0 (2.2)

where g*' is the total energy flux per unit area and unit time.

In the isolated system, the total energy U*

u* = [u*ar (2.3)

is conserved.



In the system where chemical or nuclear reactions take

place, the rate JC of reaction ¢ is defined by

ﬁi + div nivi = évich, (2.4)

where vic denotes the stoichiometric coefficient. The mass

conservation law during the reaction c leads to the relation

%mivic = 0. (2.5)

Therefore, the total mass Mc

Mc =jfn&ni dr (2.6)

is conserved, where the summation is taken over the species
Participating in the reaction c. The total mass of each

nonreactive component is of course conserved.

Since the total force on the system is assumed to vanish,

the total momentum P

P =\f2minivi dr (2.7)

is independent of time. The total angular momentum M is also

conserved:

M = er - ro) X Zminivi de, (2.8)

where ro denotes the center of mass of - the whole system.



3. Equilibrium state
In the continuous system, the Gibbs relation can be expressed

as?)

du = Tds + Zuidni, (3.1)

where T is the temperature, s is the entropy density, ar’ My is

the chemical potential of the component 1i. Inserting eq. (2.1),

we obtain 3)
Tds = du* - Zui*dni - Znimivi.dvi, (3.2)
where
1l 2
* =
¥ My + —5— mviT. (3.3)

From eqg. (3.2), we see that the state variables, are the energy
density u*, number density n; and the velocity v of each
component.

Conditions for the thermal equilibrium state are derived
from maximizing the total entropy of the system with respect to
the state variables which depend on each other through the laws
of conservation. With the help of Lagrange's method of
undetermined multipliers, we obtain the equilibrium conditions

as3)

T = T 1 (3‘4)
_ 1l 2 1 _ 2

uy = Aimi + —E— m,v, + —5— mi[w x (r ro)] p (3.5)

v, =V + wx (r - ro), (3.6)

) . s
where T, Vor @ and Ai are constants independent of position.



The condition (3.4) shows that the temperature becomes
uniform as expected. The second condition (3.5) means that the
chemical potential plus the potential energy of the centrifugal
force is uniform at equilibrium. The constant Xi is common to
all the components participating in the same reaction. The third
condition (3.6) shows that all components flow with the same
velocity, and that the system performs the uniform translation
and rotation. Hereafter, we take such a frame of reference as
translates and rotates with the system.

For later use, several expressions are mentioned here. From

eq. (3.2), we can see the statistical averagess)
1
* —_— = - -
<u (rl) A T(rz) > k 6(rl rz), (3.7)
uj*(rz)
<ni(rl) A m—— > = kéij 6((’1 - rz)r (3.8)

B
n.({r,)v. " (r,)
12 3 20 5 - x5 . s, s(wy -«

o
myvy () A T(e,) ag %ij

2)!
(3.9)
where A denotes the deviation of the quantity from its
equilibrium value, and k is the Boltzmann constant. As a
result of the property of time reversal invariance of the

equation of motion for individual particles in the system, the

state variables x and y satisfy the relation4)

<ky> = & <xXVy>, (3.10)

where the positive or negative sign is taken when xy is an even or

odd function of Vi respectively.



4. Phenomenological equations

The relation (3.2) means that the rate of change of the

entropy density is given by

£ = (u* - Zui*ﬁi - Znimivi- Vi)/T. (4.1)

Using egs. (2.2) and (2.4), we have

° = L _1-
S =-div(gT + Znivisi)

1 1

+g.VT ~ + IJ A *T
c C

1

-Z[mi(vi + vi,Vvi) + (Vui)T]-niviT . (4.2)

Here S; is the entropy per one particle of component i, and

= L J—- *
qg=gq Ingv.h, (4.3)
A* = =Ly, W%, (4.4)
1
(Vp,). = Vu, - s,T29p" ¢ (4.5)
il i TSy . .

where hi* defined by hi* = ui* + Tsi is the enthalpy per one
particle. The quantity Ac* is a 'chemical' affinity, and q is the
reduced heat flux. In a rotating system, the quantities with *

include the potential energy of the centrifugal force.



From eq. (4.2), we may define a set of forces and fluxes.

That is, the forces are

_ -1
X, = vT , (4.6)
-1
-_ *
X, = n,v,T T (4.8)
i - Vit )
and the fluxes are
Yc = JC, (4.10)
Y, = - m (¥, + v, - vVi) - (V“i)T' (4.11)

In terms of the forces and fluxes defined above the entropy

production is given by
§ = [(X,.¥, + IX_Y_ + IX .Y,)dr, (4.12)

where the integration is taken over the whole system.

The reaction rate Yc should vanish at equilibrium, because
of the principle of detailed balanrce. With the help of the
equilibrium conditions, we can show that the other forces and
fluxes vanish at equilibrium3). We may, therefore, assume a
linear relation betweem the forces and fluxes as3)

Ya(rl) = gLab(rl,r2)~xb(r2)dr2' (4.13)

Here the integration is performed over the whole system, and
the suffixes a and b denote the suffixes t, ¢ and i of the forces

(4.6) (4.7) (4.8) and the fluxes (4.9) (4.10) (4.11).



5. Reciprocity
It is proved in this section that the linear coefficients

appearing in eq. (4.13) obey the relations

0 ) o8 _ ] ] Ra
OEB ar @ ar B Ltt (rl'r2) —O,ZB ar O or B Lt (ll’.'z,rl),
1 2 1 2
(5.1)
9 a ] a
g N Ltc (rl,rz) —g - Lct (rz,u:'l), (5.2)
1 1
3 oB - _ 3
g. 3r- a Lti (r]_’r2) = g ar o LitBa(rz'rl)' (5.3)
1 1
a - - a
LCi (rllrz) = Lic (rzfrl)l (5'5)
aB _ Ba
Pig ) T Ly e e, (5.6)

where the Greek indices denote the tensorial component. The
complicated relations (5.1, 2, 3) are a reflection of the fact
that only the divergence of the heat flux q has a physical

6)

meaning . The suffixes ¢ and d indicate the reactions, and

i and j the chemical species.
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By the use of egs. (2.2) with (4.3) and (2.4), the

phenomenological equation (4.13) is transformed into

- @* - div In,v.h.* = gj”vl. Loy (T1/0,) « Xp(r,)dr,,
(5.7)

ﬁi + div nivi = c?b j'vichb(rl,rz)-Xb(rz)drz,
(5.8)

_ T
=L j’Lib(rl,rz)-xb(rz)drz, (5.9)

where the quantities on the left sides take the values at the
position. S and Vl denotes the gradient with respect to -
The second terms on the left sides of the above three

equations may be written as

div n;v. = div Toxi, (5.10)
div Inyv,h.* = div zh;’TOXi, (5.11)
U, *

— 0] ____l____ 0.0 _l_
(Vui)T + mivi Vvi = TV T hi T v T, (5.12)

where index o denotes the equilibrium value, and the higher

order terms of the small deviations from the equilibrium values

have been disregarded.
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We show here a proof of the relation (5.5). Multiplying

both sides of eqg. (5.8) by mjv:J (r3), and taking statistical

average, we have, from eq. (3.9),

o . 0
<mjvj (r3)ni(rl)> + kT Gi'

9 -
e 6(r1 - r3) = I Vil CJ (rl,r Yk,
1

(5.13)

where k is the Boltzmann_constant. Similarly, we have from egs.

(5.9) and (3.8)

9 _ a
- <n (r )m v (r )> - xT° 6 ii T o 6(r1 - r3) = - Zch (r3,rl)vick,
3r3
(5.14)
Using eq. (3.10), we have
X Vie CJ (rl,r ) = - I v, L je (rz,r ), (5.15)

which reduces to the relation (5.5), as the reactions are
independent. The other reciprocities can be obtained similarly.
Inserting the linear relation (4.13) into the expression

(4.12), we have the entropy production in terms of the forces:

N
I

>
oSS x e L (e ey x () dr e, (5.16)

Accoding to ﬁhe second law of thermodynamics, the right hand

side must not be negative for any values of the forces. This
fact limits the coefficient Lab(rl,rz) to a positive semidefinite
'matrix'. The reciprocities (5.3) and (5.5) show that the terms
containing these coefficients cancel each other in eq. (5.16),
when the system is not rotating. Therefore, these coefficients

may take any values.
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6. Local form

In the present section, we regard the system to be
homogeneous and isotropic, and apply a short-range approximation
to the linear coefficients, in order to make the phenomenological
equation (4.13) convenient for practical use. As the distance
between rl and r, of eq. (4.13) increases, the coefficient should

vanish rapidly. Therefore, we may assume the coefficient to be

of the form

Lab(rl,rz) = Aab (). (6.1)
where L.p is a tensor or a scalar, Aab is a diagonal tensor
or a scalar constant, and r = £, - r;. This local approximation

is taken for granted in ordinary theories4{ On account of

homogeneity and isotropy of the system, we may write the vectorial

coefficient as

Lab(rl,rz) = lab(r) r, (6.2)
where L is a vector, and 2 is a scalar. The local
ab ab
approximation to the vectorial coefficients makes them vanish, a
4)

fact which is known as the Curie theorem .
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Taking into account that Lab(r) is rapidly decreasing
function of r, we may expand the force Xb(rz) in eq. (4.13)
around ry in terms of r, and keep up to the first order terms
with respect to r. After straightforward calculations, the

Phenomenological equation (4.13) are reduced to the form

Yt = Attxt + zAtc vxc + zAtixi’ (6.3)
Yc = Act v.xt + ZAchd + ZACi v.xi, (6.4)
Y, = Aitxt + zAic vxC + zAijxj, (6.5)

where all the coefficients are scalar constants. The

reciprocal relations

Act tc’

are obtained from the reciprocity in the previous section,
and the other coefficients are symmetric.

The terms containing V on the right sides of the above
Phenomenological equations do not appear in the ordinary theory4).
The existence of such terms is due to the nonlocal coupling, and
is closely related to the active transport.

The higher oder terms in the expansion of Xb may be
significant in some cases. For example, the second order term of
Xj gives the effect of the viscosity, as was pointed out in a
previous paper3). Adding such a term to the right side of eq.
(6.5), we have a hydrodynamic equation of motion for each

component of the multicomponent viscous fluid.
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