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Abstract

The scheme for stable implosion is proposed and discussed.
The asymptotic theory which is one branch of homogeneous isent-

ropic compression scheme is derived and ascertained by numerical

simulations.



81. Introduction

So far many autho;guq have proposed models for laser-driven
implosion and have derived valuable results to laser fusion.
In the previous papegl), we have implied that the time dependences
are different between the mechanical power and the absorbed
laser power especially for an optimal implosion of the structured
target.

According to these implosion models, the spherical target has

12) because of their continuous

the Rayleigh-Taylor instability
inward accelération on the pellet surface. In this paper, we
discuss the possibility of stable implosion gcheme of the
structured pellet. In section 2, the basic idea is schematically
shown and an asymptotic theory which is one branch of Kidder's

3)

homogeneous isentropic scheme is derived. In section 3, we
show that numerical results agree well with our theory whose
solution has a quite different form from those given by Kidder.

In section 4, the possibility of stable implosion is discussed.

§2. Basic Idea
In Fig. 1, the scheme of stable implosion is schematically

illustrated. In the figure, r is the radial coordinate, t the

time, Al—AZ- . —A5 is the path of the'piston’whose speed
remains constant, the solid lines Al—Ol, Ol—AZ, ... are loci of
shock waves whose Mach numbers are Ml’ MZ’ ... and a dotted line

shows the path of a fluid particle. Froﬁgﬁénkine—Hugoniot
relations, the Mach number Mn of the reflected shock wave is

given by
«E (r+).(M2 = 1)
Mm% O s lteee]
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(M=2,3,4"“'), (1)



where 7Y is the ratio of the specific heats.
We assume now that the strength of the initial shock wave
is infinite, 1i.e. M.=00 , then from eq.(l) we have a
series of the Mach numbers M, = ©0 , M2==J§', M, =J3 , M, =
er/3, ------- which implies that M can be considered
as unity for m24%. The pathes of fluid particles are approximated
by straight lines after they cross the fifth shock wave. 1In

this scheme, fluid particles have no acceleration,Stable implosion

“can be expected.

Taking this into account, we now quote Kidder's formalism 3)
which is read as follows;
Fer, t)=fohlt), U, T)=F =Foht) (2)

where T, and r are respectively the Lagrangian and the Eulerian
coordinates of fluid particles, w is the fluid velocity and

h(t) is the scale factor. Dots on variables mean the differ -
entiation with respect to the time. The equation of motion

reduces to

467-2 4{ _ 1 Qijgl = const. ) (3)
Po Y‘o d ro

where 9 and { are the density and the pressure respectively,

and the subscript o denotes initial values. Kidder has derived

the time dependence of the scale factor h(t) for specific profiles

of the initial density and pressure as

AW = V+b2)(1-2) b=0 e 4 ()

_— 2 —



where

T=t/te Cte is a constant)

On the other hand, eq.(3) has another special solution

A = AtBT (5)

when the density and pressure profiles are homogeneous at the
initial time. This solution has an interesting feature that
trajectories of fluid particles are straight lines Y=Y‘o(A+Bi')
in the r-t space. If we specify the 'piston' speed as Up and
the initial target radius as RO, we can determine the integral

constants A and B respectively as

A.._:i, B:'—‘O—P‘ :":—"I_'; (6)

from the condition that all the fluid particles must converge

simultaneously at the center. Then eq.(5) reduces to
s

At = 1-t/ts . (5

From the conservation of mass, we have
2 = > AT (7)
precir = £ o dle valid
The isentropic relation (which is approximatelfvgfter the fifth
shock wave passes)
=Y =Y
PP = Pof @
together with eq.(7) leads the time dependence of the density

P , the pressure p and mechanical power EM on the boundary

surface to

P=fo (1-2/t5) " , (7-a)



Pty (1-2/4:) =1 (1= 2/25) 7 (9-5)

2 3712
EM = Pur\zla{' sw’fa(e = Po UPRO (/—t/r/x\')
(7-<)

i

700UPR02 (/—j/ts)—a)

for )’=f/3.

§3. Numerical simulation

In the preceding section, we derive the time dependence
of the various physical quantities when the pellet implodes
stabl:y. In the theory, the target structure is not taken
explicitly into consideration. But the real pellet has no
piston at the outer boundary. The reflections of shock waves
at the boundary necessarily imply the existence of the high
density 'tamper' there. In this section, we show the results
of the numerical simulation carried out for the structured
pellet.

The details of our one-dimensional spherical hydrodynamic
code are revorted in reference |3 . For simplicity’fusion
yield, bremsstrahlung and absorption of the laser light are
neglected. The parameters used here are as follows: the initial
temperature 1is 1eV , the initial number density s K x Kflo”(a
A D-T solid sphere whose initial radius is 400}pm is surrounded
by a heavier material (50 times heavier than D-T solid) with the
thickness of 10 um

Let us suppose that, the outer surface of the 'tamper'
moves with a constant speed L)P==LL2H0ﬂw&ea Then the pressure

and the mechanical power at the outer surface are numerically



obtained. Figure 2 indicates sampled trajectories of fluid parti-
cles. As clearly seen in the figure, the trajectories are nearly
straight for 'kz.zznsec,i.e. after the fifth shock wave passes.
In the figure, the shaded region represents the high density
'tamper’'.

The mechanical power EM is plotted in Fig.3 versus the time.
It is very interesting to see that peak times of EM in Fig.3
correspond$ to the arrival times in Fig.2 of outwardly propagating
sﬁ%k waves at the outer boundary. The mechanical power EM is
drawn in logarithmic scale in Fig.4. In the final stage of collapse,
i.e. t~ts, we observe EMcx(L—T/fx)—g which coincides with our
theoretical result (9-c) for Y=5/3. In the earlier stage (t~0),
a in EMoc(P“tAhja is smaller than 3, because shock waves have

finite strengthes. Figure 5 shows the pressure at the outer

surface versus the time. The time dependence is in good accordance
with our theoretical result (9-b). It should be noted that the
pressure given by eq.(9-b) significantly differs from Kidder's

result® pcx(l-t/ts)-slz.

$4. Discussions

In the preceding sections, we derive the time dependence
of the pressure and the mechanical power at the outer surface
when a structured pellet implodes stably. As pointed out in the
previous paper”), the absorbed laser power does not necessarily
have the time dependence which is equal to that of the mechanical
power, especially in the case of the structured pellet. The

conversion from the laser energy to the mechanical power will be

discussed in details in the subsequent paper.

Our theory does not fit well for t 422 nsec, which can be

— & —



seen from Fig.2. Concerning the pulse shape of the mechanical
power for t <22 nsec (see Fig.3), there may be no difficulty

fér us to produce it experimentally, because of its long period.
The most serious fact, we must point out, is that the inner
surface of the high density 'tamper' experiences the oscillatory
acceleration. We model this phenomenon using the following

equation for the amplitude a of surface perturbation as

Qo) = $k Qt) oot ) (10)

where g is the amplitude of acceleration, k the wave number of
surface wave and @, the frequency of the oscillatory acceleration.
Mathieu equation of this type leads to the stable oscillation if
the condition JE?/abﬁl is satisfied . That is to say, if the
frequency of oscillation is greater than the growth rate of the
Rayleigh-Taylor instability, there is no trouble. Thus the
instability must be examined in our example for 15<tg 20 nsec,
i.e. for the purely decelerating period of the inner surface of
the high density 'tamper'. We may have some hints to solve this
problem. Figure 6 shows sampled trajectories of fluids particles
calculated for the same conditions as those used in Fig.2, except
for the fact that the 'piston' is constantly accelerated for
0<t<5 nsec as seen in the figure. There is no serious deceleration

on the inner surface. These will be also discussed in the future.
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Fig.

Fig.

Figure Captions

The scheme of stable implosion.

Trajectories of fluid particles in r-t space.

The mechanical power E,; Versus the time.

The mechanical power versus the time. The chain
line denotes the asymptotic theory.

The pressure on the outer surface versus the time.
The chain 1ine shows our theory.

Trajectories of fluid particles in r-t space.




1

Fig.



0¢

Ot

_\UmmC




Fig, 3

A)

(!

30
nsec

20

o5

LINN

N
AdYYLIEYY



unit

arbitrary

to-t (nsec)

Fig. 4




T

5

— .
+
o

g— —
3
S
-
o

~ b —f

L ST . -
-,—{_

A -

o -

o | .

Lt

1 2 -

tst

(nsec)

Fig.



w007 00€ 007 00! 0




