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Abstract

An integral dispersiton relation in k-space was derived
for the linear normal modes of electrostatic perturbations in
an inhomogeneous plasma under the presence of a strong
ambipolar electric field. This ambipolar field causes ExB
drift with the velocity shear. Under a local method, k&>>1,
where k is the wavenumber and % is the scale length, the
effects of ambipolar field and magnetic curvature on drift wave

were investigated in a cusped configuration system. For Yi<0’

2 L

ai ImEiI is the characteristic frequency in the

=+ 2
where Yi _wEi/w
ambipolar potential and Wos is the ion cyclotron frequency, the
cusped magnetic curvature tends to have a stabilizing effect in
addition to the ambipolar field on a drift instability. For

Yi>0, however, the curvature effect seems not to be so

efficient even in such a configuration system.



I. Introduction

A systematic study of a rf plugging of plasma is succeeded
with the aid of a plasma confinement and a heating in the open-
ended magnetic cnfinementl). A previous study showed that
there exists a characteristic oscillation having the frequency
close to l.4wci, when the width of a plasma becomes near to
the ion Larmor radius piz). In this case, the ion cyclotron
damping loss of a rf field is small and the exterual rf field
can penetrate resonantly into the plasma. When the width of
plasma A becoms large for example, A~5pi, the dispersion
relation reduces similar to that of uniform plasma. Since, in
this case, the characteristic frequency of the ion cyclotron
wave becomes so near to Woi for Te=Ti’ the damping of the wave
becomes very large and it becomes very difficult to excite such
a wave in a plasma.

If a plasma is confined in a cusped magnetic field, the
width of open end of the line of force becomes near to Py that
is, plasma becomes a sheet plasma. The stability of this sheet
plasma has essential relevance to a rf plugging of plasma. The
sheet plasma with a width near to N has a static electric
field perpendicular to the sheet and the sheet plasma becomes
very anisotropic in the temperature distribution.

Gradient-driven microinstabilities in an inhomogeneous
plasma have attracted wide-spread interests in resent years in
view of the heating and the anomalous transport in a magnetically

confined plasma. In analyzing these instabilitis, the

assumption is frequently made that the Larmor radius is very



small compared with the scale length of plasma. Since the ion
Larmor radius o; is comparable to the scale length A in a sheet
plasma, however, the fluid description for ions cannot be

used in this inhomogeneous thin plasma, requiring the kinetic
description for ions. It is of considerable interests

to perform a stability analysis of these instabilities.

In Sec.II, we derive an integral dispersion relation in k-space
for electrostatic modes in an inhomogeneous collisionless
plasma with an ambipolar field. 1In Sec.III, we develop a
stability analysis by using a kind of local approximation. We
discuss the effect of ambipolar field on a drift wave driven by
a density gradient in Sec.IV. 1In Sec.V, we consider a plasma
with a cusped configuration and investigate the effect of
magnetic curvature on a drift wave. Section VI will be devoted

to the discussions.



II. Formulation

For a collisionless, low-B plasma having a density

inhomogeneity perpendicular to the uniform magnetic field

+— P 1 1 1 —4 [ 2::
B,=By&,/ and with the ambipolar potential ¢, EO/ZXO X
M/quszz(wE2 is defined as gEj/AM and ), is a characteristic
scale length of the field), the particle trajectories must

satisfy a equation of motion and initial conditions
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where primes are used to denote the trajectory variables, T=(x,
vy, z), and Eo(x)= —VQO. The constants c, gq, and M are the
speed of light, charge and mass, and species subscripts are
supressed. Equation (1) yields the conservation of energy and

two components of canonical momentum:
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where wc=eB0/Mc is the cyclotron frequency.

As a function of the constants of the motion Eq.(2), the
equilibrium distribution function fo(x, 5) having the appropriate
ambipolar field and the desired density inhomogeneity is

assumed to be
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The z and x axes are chosen such that BO>0 and perpendicular to
it, respectively. 1In Eq.(3), Y=twé/wé and 8=p2/)2%, where

p and A are the gyroradius and the scale lengh of the density
inhomogenity, respectively. Also N0 is the particle density at
x=0.

The integration of fo(x, 3) with respect to the velocity
yields the desired unperturbed density as

x2
n,(x) = Nyexp (- = ) . (4)
2\
Now we should note that the equilibrium distribution funciton
(3) has the effect of unequal temperatures such as Tx=Tz#Ty,
which are obtained by averaging va2 with respect to the
equilibrium distribution function (3).

In terms of the trajectory variables of Eq.(l), a solution
of Vlasov equation for the perturbed distribuion function can
be cast into the form

3L, (¥')
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where fo(x, V) as given by Eq. (3) may be employed. The

solutions of Eq. (1) are given by
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and
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where Q%= wé + wé and ¢= Q(t'+t). Equations (9)-(11) show that
the equilibrium distribution function (3) includes the x
dependent velocity shear effect due to E x B drift. It is
considerable interest to investigate instabilities caused by
the effects of anisotropy and the velocity shear effect.

Taking into account an inhomogenity of a system in the x

direction, we now assume the potential as
Y(x, v, 2, t)= J dk Y (k)expli(kxtk,y+ k,z-wt)]. (12)

This is equivalent to taking the y and the z Fourier transforms
of the potential. Also, a functional dependence of the

unperturbed distribution function is as follows
£ (x, V)= h [ T(v2+vi+vi+wlx?)lg (v _+0_x) (13)
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equation (5) can be integrated over the particle orbit to

obtain

[ dk' ¥(k') expli(k'x+k,y+k,z-wt)]
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where the primes for h' and g' mean the derivations with
respect to the variables, respectively.
Equation (14) is combined with the Poisson equation

VIV(Y, t) = 47 I g Jd3$ £ (5, £, V) , (15)
j

to yield
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Substitution of Egs.(3), (6)-(11) into Eq. (16) gives
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Introducing the new variable v_= vy+ w.X, equation (17) can be

Y



integrated with respect to coordinate x, velocities (vx, Gy,
VZ), and ¢. After the lengthy calculations, we have

© ) 2 - 2
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where In(bj), Z(Cg) and Z'(Cg) are the modified Bessel
function, the plasma dispersion function and the differential
of them, and Vj mean the thermal velocity for j-th spicies of

plasma particles. In Eqg.(21), bj and Cg are defined by
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and the initial phase ¢0(k, k') is also given by
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Now we note that in the second term of the numerator of Eq. (22),

. 0 = 2 2 1/2
wcj is replaced by 3 (wcj+ij)

gyration in the ambipolar potential. The third term in the

due to the particle

numerator and also the second term in the braces of the
denominator of Eq.(22) are corrections induced by a velocity
shear due to the ambipolar field. Equation (19) is an integral
dispersion relation in k-space which is applicable to any
electrostatic modes in an inhomogenious collisionless plasma.
While it is difficult to find analytic solution of Eq. (19;, one
may discuss wide range of instabilities by using & numerical
analysis. But the detail of such a numerical analyvsis awaits

future investigation.

ITII. Stability Analysis

Since Eq.(18) with Egs. (19)-(23) is quite general, so we
may discuss several instabilities for electrostatic modes on
the basis of this equation. One should find analytic
solutions by solving a nonlocal equation in k-space such as

Eg. (18) provided & ~ A (& is a characteristic wavelength),



however, one may discuss properties for several instabilies
even under the local approximation, In this paper we restrict
ourselves to a local solution of Eq. (18),

Let us now introduce a transformation as
¥(k) = p(k) exp (igk) , (24)

where B is an arbitrary constant. Equation (24) means that

¥ (x+B) can be represented as Eq. (12), namely
¥ (x+B) = J dk y(k) exp (ikx) . (25)
Substitution of Eg.(24) into Eq. (18) gives
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Let us carry out the integration with respect to k' in

Eq. (26) by the method of steepest decent. After the lengthy

calculation, we have

F (k) ¥ (k) exp (iBk)

) B2 J n (0),.,(1) . B n
=% exp (iBk- ) ¢(k+1 + D)K.V R (kL k' =k+is— + )]
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where the saddle point is (k'-k) = iB/A? and we also put (k'-k)
= iB/A%+ n/)A. Now we consider a case in which k>>B/A2%, n/x,
Expanding all quatities in Eq. (30) into power sireis with

respect to n/A, the lowest order equation reduces to

F(k)V(k) = I exp(- E——)w(k+1 )[K(O)+K(l)(k K k+1——)]

3 A2 J A2 !
(31)
where
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In Eq.(31) with Egs. (32) and (33), we should notice that the
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initial phase ¢0j(k,k') is order of n/}, and bj can be

approximated as

2

b. = p.2 -
373 (1+Yj

+ kz) '

provided k>>B/A%,

(34)

If we neglect the charge separation term in Eg. (31) and

consider the case of k>>8/\2, the dispersion relation is given

as

o r{Ox Dk, ke =0,
j=e,i J

(35)

where Kéo) and Kél)(k,k') are defined by Egs. (27) and (28),

respectively.

IV. Effect of Ambipolar Field on Drift Wave

It is physically plausible that the important waves in an

inhomogeneous plasma are drift waves.

effects of an ambioplar field on a drift wave.

Let us consider the

In the drift

limit, vi<<w/k“<<ve, only the leading zeroth term in In(bj) is

retained, and only the finite Lamor effect from jons bi is

retained. 1In this limit, the dispersion relation can be

written as

z'(cgo)}= 0,

T, T. W-W w2 (8§ _ -y )y Ak
1+ = —i{/_ e mgh)- =S “21 (2§50}
e e 2vek,,e zvekue
w—@*i : wci(éi—yi)yikzki
+I . (b.)exp(~b.){ "L g2l - .
071 i = 00 2 2
2v.k, 2viky
1 1 1 1
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where

.. = (6.~
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. w+BkL 1+y. Yjwcj
20" J_ . (38)
/fv.k".
J 7]
. (1+Y.~8.)y?
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Since in the drift limit, vi<<w/k"<<ve, and the lowest
significant order contribution from the electron Z-function

that appears in Eqg. (36) is its residue, we have

Z(:go)zi/? exp[—(cgo)zl, Z'(cgo):~2 ’
(40)

Z(554)2=1/25, : 2' (g50) =1/ (505 % o

where the contribution arising from resonant ions is neglected
compared with that from electrons. Consequently the dispersion

relation for a drift wave including the effect of the velocity

shear, reduces to

(1+Ye-6e)Y "
v, T, w_&*e ~ _ wtpk,— I+, e ce
I+ &=+ 7 ———i/m - /2 = ]
e e v/ Vekne Vek"e
2 2y, 2 -
+ T, wce(ée—Ye)Yex Ky ! I.(b.)exp(-b.)=0
T S22 (T+=5.) 01747 SHPITR4 I =H
" — 3 J.
e e w+Bk, 1+Yj Yjwcj

(41)
Writing w=wr+iwi with w >>w, and bi<<1, for convinience, we

have

- 13 -
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2
where W, = - (Te/eB)(B/l Yk, .
For no ambipolar field, Te/Tibi<<1' and B=A, equations

(42) and (43) can be approximated to be

T
~ e
w. s w*e[l"‘(l‘*‘ 'T'i—)bi] ’ (45)
w, = T 1 Te) w ’p. [1-(1 Te b 46
Al CL SR ACE IR FHE S A LS (46)
2vek" i i

which correspond to the usual dispersion relation for the drift
wave. The effect of the (1+Te/Ti)bi term of Egs. (45) and (46)
)

on stability has been considered by Liu et al.3 The interesting
feature of Egs.(42) and (43) is that the term in Yi acts to
higher w from Wig and so might be expected to result in an
instability in a manner similar to that of finite Larmor effect
in a case of Yi>0. On the contrary, for Yi<0, the term in

Y, acts to lower W from W, and results in a suppresion of

instability provided

Te
lo_ 2| 7. Pj
E1l 1
lv;l = 57 T (47)
(1+ T;bi)



V. Effect of Magnetic Curvature on Density Gradient

Instabilities

Let us extend the present formalism into a system
including a effect of magnetic curvature such as a cusped
configuration. To do so, we consider a cusped system with an
ambipolar field Eo(x) in which the density gradient is in the x
direction and. the magnetic field §0=BO[~X/L, 0, z/L], L is the
distance from the plasma center to the part of line cuspz).
Under this configuration, the gravitational field equivalent to
the effect of magnetic curvature is almost parallel to the x
direction. In this case, the particie trajectories must

satisfy the equation of motion and initial conditions instead

of Eq.(l),

’ f'(t'=t) =

Ry

(48)

av' i!
dt

3 eyt + &

I

X Byl + B,  Vi(t'=t) =V
where the gravitational force may be approximated to be

v2
5 = 31
e, s g © . (49)

|
Q
(o ke

The unperturbed distribution function which is a function of

constant of the motion, can be taken to be

> M 3/2 __1/2
£o(xs V)= Ny (55) (1-6+y)
x expl- Y[ (vi+v24v2402x %)+ Y (v +u x) 21} (50)
2T X 'y z E 1-8+y''y ¢ f
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when38é=wé+g/L. We note that the formalism disscussed in

Sec.II-Sec.IV is also applicable to a cusped system by

replacing wé by @E. Finally, the dispersion relation for a

drift wave is given as

~

w Y -
. _Feriq- 1
w_ = —é‘——[(l b, )+ 5 (51)
_ 2 Y
Ve 1 To. (0xg) Ti Y4
wy ¥ — __T_—;-—(l+ —) (1-b.) (b.+ = ) (52)
- $3 Vek"e Ti l+‘Yi i i Te l+‘yi

.\?=&2 (A)Z K2 =~2 v A: v
where ¥y Ej/ .y k,.j k“j(Yj+Yj), and F F(Yj+Yj). Krall and

Rosenbluth have considered the curvature effect by introducing
an equivalent gravitational field, and have found that the

favarable curvature can stabilize a electrostatic drift

instability4). Also, Kitao investigated the effect of magnetic

5)

curvature on stability of a Alfven wave For the cusped
configuration considered in this section, equations(51) and

(52) showed that the stabilization condition is satisfied

provided
Te
Gl 3T ., % (53)
* l+b.E§ iy o
1Ty

For Yi<0, the cusped magnetic curvature tends to have a
stabilizing effect in addition to the ambipolar field on a
drift instability. For Yi>0, however, the curvature effect
seems not to be so efficient in a cusped configuration system
because the inequality (53) is a quite severe condition in such

a system.
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VI. Discussions

We here summarize briefly the results obtained in the
present paper. First, we derived an integral dispersion
relation in k-space, which describes the linear normal modes of
electrostatic perturbations in an inhomogeneous plasma under
the action of an ambipolar field. 1In analyzing instabilities
in an inhomogeneous plasma, there exist two methods, namely,
the local method and the nonlocal one. The local method is
valid only when the wavelength is much smaller than the scale
length, while the nonlocal method is most effecient when the
wavelength is comparable to the'scale length. Eq. (18) does not
depend on the Larmor radius being small compared with the scale
lenght. Both methods for Eq. (18) may be employed to find the
normal modes and related instabilities in the plasma over
wide range of densities and density gradients. Recently,
Gerver et al. investigated the normal modes in a loss cone
plasma with density varing sinusoidally in spaceG). They
showed that it is possible to use a local method to find the
normal modes and their instabilities, even when the Larmor
radius is comparable to the scale length, provided the
wavelength is much less than the scale length.

In the present paper, we developed a stability analysis
for Eq.(18) by using a local method. Particularly, we
discussed the effect of ambipolar field and also the effect of
magnetic curvature on a drift wave in a cusped configuration
system. For the negative ambipolar field (EO<0), the cusped

magnetic curvature tends to have a stabilizing effect in

- 17 -



addition to the ambipolar field on a drift instability. For
the positive ambipolor field (E,>0),however, the curvature
effect seems not to be so efficient, even in a cusped
configuration system. Analysis of normal modes of experimental
plasmas with Lamor radius comparable to scale length awaits

futuer investigation.
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