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Abstract

It is found that a nonlinear wave-particle interaction based
on the single wave model can be changed strongly by introducing
small collisions into plasma electrons. These collisions are too
small to change the linear stage. However, they alter the phase
relation between the single wave and the trapped electrons in the
nonlinear stage. As the result, the wave amplitude of the first
minimum decreases anomalously and the persistent trapped-particle

oscillations in collisionless case are destroyed.



A nonlinear wave-particle interaction in a small cold beam-plasma
system has been investigated both theoreticallyl and experimentally?
Theoretical predictionsl based on the single wave model agree with
experimental observations2 through the initial trapping of beam
electrons and up to the first amplitude oscillaticn. Beyond this
point, however, experiments2 exhibit a rapid decay of the saturated
wave rather than the persistent trapped-particle oscillations
predicted by the theory% Recently, Dimonte and Malmberg6 observed
destruction of trapped-particle oscillations simulating background
plasma by a traveling wave tube.

A spatial evolution of a beam-plasma instability during steady
injection of a small cold beam into a warm plasma has been studied
by a particle simulation? A typical example of results is shown in
Fig.1l. Behavior of an unstable monochromatic wave is in agreement
with the theory up to the point where it saturates due to beam trapping.
A discrepancy between simulation results and the theoryl, however,
appears after this point. The most different features are as
follows: The wave damps strongly to the first minimum and fails to
regrow to the amplitude of the first maximum. The ratio of the
amplitude of the first maximum to that of the first minimum is about
three times as large as the expected value from the theory} In
addition to this, motion of beam electrons, i.e. the phase space
loci of the electrons shown in Fig.1l(B), do not become coincident

with the theoretical results after this point.



In order to examine some discrepancies from the theory which
can occur in both the laboratory experiments and the particle
simulation, we have extended the theory to the more rigorous
one including the collisional effect of the plasma electrons.

In Ref.1l, the collisional effects and the higher order of the
temperature effect have been neglected. In the warm background
plasma with collisions, however, the behavior of the wave amplitude
and beam electrons in a nonlinear stage can be changed strongly from
that expected by the collisionless trapping model, even if collisions
are too small to change the linear stage. As an effective collision
frequency, we may adopt the reciprocal of the slowing down time
associated with the Coulomb collisions in a dense plasma. Even

when collisions are negligible, however, some weakly nonlinear
processes(like parametric instabilities) may result in an effective
damping of the saturated wave?'6 Since the beam velocity ﬁay be
much greater tﬁan the plasma thermal velocity, colliéional effects
of the beam electrons are neglected. In beam-plasma experiments
where plasma is generated by the injected beam, however, electron-
neutral collisions of the beam electrons may be important for the
development of the nonlinear stage. These collisional effects may
also have another effect which is different from that considered
here.

We consider the spatial evolution of a single wave of frequency @,

Following Ref.l, we can treat the plasma as a linear dielectric



medium. The plasma dielectric function E(w)é)is given in the form
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plasma electrons, k is the wave number and )Y is the effective
collision frequency of the plasma electrons. The system of equations
is obtained in terms of a natural extension of the model by O'Neil

et al} and Jungwirth and Krlin3:
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Equation (2) is obtained by usual manipulation after the Taylor
expansipn of the dielectric function up to the second order of k—k0
where k, = W /vy. The real part of the dielectric function Er(w, go)
need not be necessarily equal to zero. In these equations, n_.and

n, are the plasma and beam densities, respectively, “)b is the plasma
frequency of the beam electrons, \£N is the initial beam velocity, dJwJ)
is the difference between the frequency of the most unstable mode CL%t
and ), and ® is the spatial scaling factor, where (3]'/2/2))(k0 is the
spatial growth rate in the collisionless warm plasma. The normalized
electric field E(Q) of the wave and the spatial coordinate )2 are
defined in terms of x and » by E(Q) = eE(x)/(mvch){?) and 72:
)(x(CU/vb), respectively. The phase space coordinate Sj of the

j~th beam electron is defined as 5; =¢1)[tj(x)-x/vb]. The function
tj(x) is the time when the j-th beam electron passes the point x.

The velocity ;(j in the laboratory frame is obtained from }} = dfj/a(’z
by using the relation ;{j = vb/(1+ K§j ). In Eq.(2), the first term
of the left hand side is derived from the detuning? the second is

the collisional effect, and the third and the fourth are the
temperature effects.

The typical results of the effect of collisions on the wave is

shown in Fig.2. The dashed curve shows the amplitude squared vs Q

in collisionless case. The solid curve is the amplitude squared vs Q

when )Ualit = 2)(10_3. Some other parameters are chosen to fit

4

the simulation, i.e. nb/np = 5%X10° ", v, /v, = 9.9 and J‘w/wpt =0.



Before the point ? = 12, the collisional effect does not significantly
alter the spatial evolution of the wave except that the wave amplitude
saturates at a slightly lower level than the wave does in collisionless
case. After this point, however, two curves begin to depart from
each other. The wave amplitude decreases drastically much smaller
than that of the collisionless case and fails to regrow to the
initial saturation level.
The corresponding evolution of the beam in the collisional case
is summarized in the sequence of phase space loci shown in Fig.2(B).
Each locus is composed of the phase points of the 200 beam electrons
at various positions denoted in Fig.2(A). In accordance with the
amplitude oscillation, the sloshing back and forth of the trapped
beam in the wave trough appears. Though the motion of the beam
electrons in phase space is still a reversible process, after saturation
its behavior changes gradually from that of the collisionless case.
Near the point 7?3 , the locus splits into two parts and forms the
double structure of vortex. Moreover, the beam electrons begin to
be smeared out in an irreversible manner after the point )24 .
Numerical results described above agree with the results of
particle simulation. Here we estimate the collision frequency in
the simulation: Collision frequency )/ of the one-dimensional
particle simulation has the relationship4 with the plasma density np
and the Debye length AD , e Y = (n 7\_0)2, where A is a

numerical factor and is about 0.1, and np?LD 90 in this simulation.




Then the calculated value of »7ﬁﬁ>is about 1.2)(10_3, the value )0ﬂx¢t
= 2X 10”3 assumed in Fig.2 is reasonable.

From the numerical calculations, it is clear that collisions
play an important role in the nonlinear stage of beam-plasma
instability. The features in Figs.l ar? 2 are well explained as
follows: Plasma electrons support the unstable single wave as a
linear dielectric medium. On the analogy of an electric circuit,
collisions of plasma electrons act as a phase shifter. A spatial
evolution of the wave phase is shown in Fig.3. Near the point 72
= 12.5, the wave undergoes a rapid phase shift as well as a strong
damping of the amplitude. According to our detailed analysis of the
phase space loci, the beam electrons spill into adjacent wave troughs
and spread in phase space due to the reduced amplitude and the phase
shifts, as pointed out by Dimonte and Malmberg? After 73 , numerical
calculations also show that the kinetic energy of the beam electrons
remains at a some lower level than the initial beam energy. It can
be considered that there is nearly as many particles being accelerated
as there is being decelerated, and that little net energy exchange
occurs and the wave remains at a low level.

In Ref.6, oscillations could be destroyed as a result of particle
pPhase-mixing by either (a)wave damping or (b)modulation of the main
wave by unstable sidebands. In the former case, a catastrophic
effect on the oscillation is expected to be similar to the results

presented in Fig.2. They also obtained the similar result as (b)



by launching the main wave and broad-band noise. We consider the
case where a small collision and broad-band noise of low level
coexist. The destruction of the amplitude oscillation may occur
more easily, if the amplitude of the first minimum can decrease
near to the noise level by a small collision. In this case, the
destruction can occur after the first minimum. The tendency like
this appears in the simulation result in Fig.l and may occur in
laboratory experiments when the saturation level is not much larger
than the noise level.

We wish to thank Prof. H. Momota and H. Naito foi their useful
discussions. This work was carried out under the Collaborating

Research Program at the Institute of Plasma Physics, Nagoya University.
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Figure captions

Fig.l.

Fig.2.

Fig.3.

(Aa)

(B)

(A)

(B)

A spatial evolution of the wave power averaged in a term

of 630f~660<u);1. The solid line shows the theoretical
linear growth rate. Both E___ and A osc 2re the

calculated values for the maximum amplitude of the wave
and the period of the amplitude oscillation, respectively,
from O'Neil's theory.

The motion of the beam particles in phase space.

Comparison of the calculated spatial evolution of the
single wave for collisionless case, the dashed curve,
and for collisional case, the solid curve.

Phase space loci for the beam particles at various
positions denoted in Fig.2(A). Each point gives the
velocity x/vb in the laboratory frame and the normalized
spatial coordinate § for one of the beam particles.

Only every second particle is plotted.

A spatial evolution of the wave phase for (A) a collisionless
case and (B) a collisional case. The solid curve and
the dashed curve are the real part and the imaginary part

of the electric field of the wave, respectively.
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