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Abstract ——— A review is given to extensive development
of theoretical, computationai and experimental studies of
noplinear wave propagation'in collisionless plasmas.
Fixstiy, the historical experiment of Ikezi et al. is
discussed in coﬁparisoh witﬁ theoretical analysis based

on the Korteweg-de Vries equation. Systematic discrepancy
between the observation and the theoretical pfediction
suggeéts that it is necessary to examipe such as higher
order mode coupling effect and contribution of trapped
particles. Secondly, effects of the nonlinear Landau
damping on the envelope soliton of ion plasma wave is
discussed on the basis of theoretical study of 'Ichikawa-
Taniuti, experimenfal observation of Watanabe and numerical
analysis of Yajima et al. Finally, a new type of’
evolution equ;tion derivea for the Alfvén ﬁave is examined
in some detail. The rigorous solution obtained for this
mode represents a new kind of envelope soliton, in which
both of its phase and amplitude are Subject to modulétion
of comparable spatial extension. In conclusion, the
emphasis will be placed on the fact that much more
intensive experimental researches are expected to be done,
since the powerful methods to disentangle various
nonlinear evolution equations are now available fof

theoretical approach.



I. Introduction.

Studies of nonlinear wave
phenomena in collisionless plasmas provide a firm base
not only for exploring fundamental researches on nonlinear
physics, but also for developing practical applicationé
in controlled nuclear fusion technology. Problems of
laser-plasma interaction,_aﬁomalous transport and radio-
freqﬁency confinement are typical examples having strohg
motivation in the latter connection. In this paper,
however, we wili put our emphasis onvthe fact that recent
advancement in understanding of noﬁlinear wave phenomena
opens the way to establish physicé of nonlinear phenomena
in nature.

In the month of August 1834, Scott-Russel [1] had the
first chance to observe a rounded, smooth and well
defined heap of water continued its course along the
channel appearently without change of form or diminution
of speed.- This solitary wave propagated about one miles
at a rate of some eight or nine miles an hour, preserving
its original figure some thirty feet long and a foot to
a foot and a half in height. In 1895, analyzing competiﬁg
process of dispersive effect and nonlinear steepning |
_effect in the shallow water wave propagation, Korteweg
and de Vries [2] have derived a nonlinear partial differen-
tial equatibn to explain the properties of the solitary
wave. This équation is now called by their names.

Since Gardner and Morikawa [3] have rediscovered that
the Korteweg-de Vries equation valids also for nonlinear
magneto-hydrodynamic wave propagating perpendicular to

the external magnetic field, refreshed interests have



been stirred up on the studies of nonlinear wave phenomena
in the field of pléSma physics. Theoretical prediction
of Washimi and Taniuti [4] on the possibility of the ion-
acoustic solitary wave has been confirmed experimentally
by Ikezi, Taylor and Baker [5], [6]. Reinforcement of
the genius invention of the inverse scattering method of
solvihg nonlinear evolution equations [7], [8] has
encouraged us to endeavor to disentangle complicated
nonlinear wave phenomena on the firm theoretical ground.
We begin our discussion on the historical experiment
of Ikezi et al [5], [6] on the ion-acoustic soliton in
section II, and then proceed to discuss recen£ theoretical
development on the properties of solitons associated with
the weakly dispersive system in section III. 1In section
1V, we discuss theoretical and experimental aspects of
the nonlinear wave modulation in the strongly dispersive
region. We present in section V a new type of evolution
equation derived for the Alfven wave, propagating along
the magnetic field, and discuss its analytic steady state
solution in some details. As concluding remarks, we
mention briefly potential importance of the studies of
nonlinear wave phenomena on understanding of behaviour
of plasmas which are expected to be produced in controlled

thermonuclear fusion devices.

IT. Ion-acoustic solitons. Firstly, let us derive
the Korteweg-de Vries equation for the ion-acoustic wave
on the basis of the reductive perturbation theory devel-

oped by Taniuti and his collaborators during the years of



19681974, [9]. For a collisionless plasma composed by
cold ions and warm electrons, the basic set of equations

may be expressed as (in a dimensionless form),

P 9 _
3ED 5 (nu) = 0 , (1.a)
9 9 - _ 9
3E u + u‘5§ u = % vy, (1.b)
82
32w=ne-n ’ (l.c)
X
n, = exp U] _ (1.4)

where n=5i/n°, ne=ﬁe/ng, u=ﬁ(KTe/M)_l/2and ¢=$(KTe/e)_1
are the dimensionless ion number density, electron number
density, ion velocity and eléctro—static potential,
respectively. Dimensionless space-time variable (x,t)
are measured by the Debye distance (KTe/4Tre2no)l/2 and
the ion plasma frequency (4ne2no/M)1/2. Needless to say,
we are considering one dimensional wave motion in the
system.

Imposing the boundary condition,

n=1,  ¢=0, u=1 as x| » o (2)
we introduce the stfetched variables_

g = ' (xt), s (3.a)

v o= e | (3.b)

With these re-scaling of the independent variables, the

basic equations (l.a)n(1.d) are transformed as follows,
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€3¢ -3 + 3E (nu) =0 (4.a)
9 9 ] _ 3

€ 37 U~ 3¢ n+u 3E u = - o3F Y (4.b)
.92

€ 37 Yy =expy -n (4.c)

Substituting power series expansions of n, u and V,

(1) (2)

n=1 + € n + €2 n'4 .- - (5.a)
u= eu'l) 4 203 4 .ol ' (5.b)
p= €¢(l) + €2w(2) 4 oo (5.c)

into eqs.(4.a)&(4.c), we can establish relationship améng

the first order quantities as

1% =n = u = n ’ (6)
in the lowest order expansion of eqs.(4.a)¢(4.b). Their
explicit (&,t)-dependence is determined through the

Korteweg-de Vries equation

(1) (1) (1) (1) _

3

N =

3 33
3w vV taaEs ¥
which is derived as the compatibility condition of the
second order components of eqs.(4.a)&(4.c).

Although the Korteweg-de Vries equation can be solved
analytically for an arbitrary initial value with the help

of the inverse scattering method, here we present a steady

state one-soliton solution of (7) as

Yy = A sech?[D(§ - At)] ' (8)



A = % A , (9.a)
D= (a2)/* . (9.b)

Namely, the one solitoﬁ.runs with velocity faster than
the ion acoustic speed by the amount proportional to one
third of its amplitude. The width of soliton is invetéely
proportional to the square root of its'amplitude. Fié.l
illusfrates nonlipear evolﬁtion of the large amplitudé
perturbation excited in the double plasma device, having
the following parameters no¥(1m2)XI09 cm~?, Te=2¢3 ev,
T,/T; ~ 10 in low pressure Afgon gas with (2§S)X10-“ Torr
in typical operation conditionsf The large amplitude
perturbation is decomposed into several peaks in the
course of its propagation. The first small peak is a
p:ecursof consisted with ions-reflected back from fhe
large potential barrier, of which properties have been
examined theoretically by Kato et al [10].

We may summarize the experimental results as follows:

1) The velocity of the soliton is approximatély in
accord with the theoretical value predicted by (9.a) but
the observed velbcity is faster than the velocity of
the Korteweg-de Vries soliton.

2) The width of the soliton is in rough agreement
with the theoreticai value of (9.b), but it is narrower
than the width of the Korteweg-de Vries soliton.

3) The number of solitons is in agreement with the

value predicted by the analytic solution given by the



inverse scattering method.

4) The recurrence to its initial form of perturbation
has been demonstrated.
Systematic discrepancy between the experimental observa-
tion and the theoretical prediction calls for refinement
of simplified Korteweg-de Vries soliton description.
As an improvement of the model, effects of finite ion
temperature have been examined by Kato et al [10],
Tappert [11] and Tagare [12]. With regards the large
amplitude effects, Schamel [13] has proposed a different
type of the nonlinear equation with full account of the
trapped particles by electrostatic potential of the wave,
while Konno and Ichikawa [14] have shown that contribution
of three-wave interaction, with account of the finite ion
temperature effect, removes the discrepancy between the
theory and experiment considerably, (Fig.2). We should,
however, emphasize that none of these can discriminate
the others, conclusively. Experimental investigation for
various electron-ion temperature ratio will be useful to

draw definite conclusions.

III. Higher order perturbation and dressed soliton.

Besides the above mentioned refinements from the
physical consideration, we may ask how contributions of
higher order perturbation térms modify basic properties

of the Korteweg-de Vries soliton within the mathematical
framework of the model system described by egs.(l.a)n(1l.d).
We have undertaken the analysis of higher order terms of

egs. (4.a)v(4.c), [15]. The second order quantities n(z) and



(2)

u are expressed as

3 2
n(2) - lP(Z) + % w(l) w(l) _ 322 u)(l) , (10.a)
(2) _ ,(2) _ 1 232 (1)
u =9 2 3E7 ] K (10.b)
while behaviour of the second order potential ¢(2) is

determined from the following equation,

3
ar VP g gl v 2@ J5 )y,
(11.a)
where
5 3
septh=- 250y 4 2, 20,5 o Gy P2
(11.b)

Thus, the Korteweg-de Vries equation (7) and the linear
inhomogeneous equation (ll.a) with (11.b) describe
nonlinear ion acoustic wave propagation in the second
order.

(1)

Seeking a type of solutions (n) and w(z)(n) with
argument

n = E - AT ’ (12)

we have obtained a steady one soliton solution of the
coupled set of egs.(7) and (1ll.a) with (11.b) as follows,‘

letting ordering parameter € > 1 ,

v = o By v+ @Dy (13.a)

(1)

v 7" (n) = 3x sech?(Dn) , (13.b)

vy = %Azsechz(nn){ZDntaHh(Dﬂ)

- 8 + 7 sech?(Dpn)} . (13.c)



with

b= (/)77 . / (13.d)

The perturbed potential VY(n) can be regarded as the
dressed soliton, of which velocity A is given by the

amplitude A of the ion acoustic potential perturbation as
1 2
A= 3 A+ = A . (14)

We have observed numerically that the steady state clouds
(13.c) moves stably with the Korteweg-de Vries soliton
core (13.b).

We have also examined numerically the coliision processes
of the dressed solitons, [16]. As a solution of the
Korteweg—-de Vries equation (7), we take the well-known

two-soliton solution,

v (£,7) = 24[1 + exp(2D,n;) + exp(2D,n3)

-1
+ exp(2Dyn,; + 2D,n, + §3)1 [D;’exp(2Dyn;)
+ D,2exp(2D,n,) + 2(D; - D;)%exp(2D;n,+2D2n;)
+ Dy2exp(4Din,+ 2D,n, +83) + D;%exp(2D;n; +

4Dyn, + 53)] ’

where

ny, = & - Xt - &, ’ (16.2a)
n, = & - At - & ’ (16.b)
D, = (/)7 , (16.c)
D, = (M/Z)l/2 ' (16.4)

_ 2
§3 = log [ (D, D) ] . (16.¢e)

(D) + Dy)?



The parameters 8, and 6, denote initial positions of the
two solitons. We describe an initial state of the
binary system of the dressed solitons approximately by
superposing the steady state second order clouds (13.c)
with the amplitudes given by A; and A, at the positions of
§; and §,, respectively. Fig.3 presents the temporal -
evolution of the shape of two dressed solitons with the
values of 1,;=0.3 and X,=0.24. The thin line represents
the Korteweg-de Vries soliton core, while the broken line
at time 1=0 represents the steady state second order clouds
associated with each soliton core. 1In the course of
collision process, we observe that the clouds associated
with the binary soliton core redistribut themselves in
such a way to equalize their amplitude after the collision.
Concerning with the structure of the dressed soliton,
Sugimoto and Kakutani [17] have remarked that the term
with Dn tanh(Dn) implies the fact that the reductive
perturbation expansion carried up to the second order is
not free from the secularity. They have proposed to
eliminate this term by the method of multiple space-time

variables. Introducing the following multiple space-time

variables,
3 /2
£=e? (x-1) , o= ¢, (17.a)
£o= 83/2 (x - t) , Ty = 65/2 t , (17.b)

they have obtained the following equation for the place

of (11.a),
(2 2 1
ax v g v e T 2 s M)
- 0 (1) _ 1 3 (L), 3 3% (1)
30, ¥ 2 3, W Y T gy v, a8



(1)

where S (VY ) is given by (11.b). As for the steady

one soliton solution of egs.(1ll.a) and (18), taking a

-

form of

o) (n572,82)=6D (1, ,£,) Psech? [D(T2,E2) (40 (T2, E2)) 1,
(19)
where n is given by (12), and D is defined by (13.d),

they have obtained the following set of equations,

3 3

3., 00 v 3, D=0 ¢ (20.2)
3 o _ ap 2 o _ _3 . ‘

57, 0 - D 560 6 = -3 D% (20.b)

as oonditions to eliminate the secular term. Hence, slow

variation of the phase 6(t2,£2) is given by

3

8(t;, E2) = = 3D%(E, -Atz) = - €5 D’n, (21)

where D = ()\/2)1/2 is a constant. Solving w(Z) from
(18) with (19) and (21), one can easily write down the

perturbed potential up to the second order terms as
7(n) = 3) sech?(Pn) + 3 A?sech? (Bn).
[-8 + 7 sech?(Dn)1 , (22)

with the definition of

b= o/ a - 3n . (23)

It should be noticed here that the velocity of soliton
A is given by (14) expressed in terms of the maximum
soliton amplitude A as before, but structure of the

renormalized soliton is now given as

- 10 -
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by o= Y )+ g ), (24.a)

e

A (L - :Z’-x) sech? (Bn) , (24.b)

v (m)

CcO

~

wcl(n) =~—7-%Xzsech2(5n) tanh? (Dn) , - (24.c)

~

where wco(n) is the second order renormalized soliton
core, and &cl(h) represents the second order cloud
surrounding the core. 1In Fig.4, we illustrate the .
structure of the renormalized soliton. -

Now, Kodama and Taniuti [18] have developed an elegant
analysis of the renormalization ptoceduré in carrying out
the reductive perturbation to arbitrary higher order terms.
They have reduced a set of equatibns for a model syStem
to a renormalized Korteweg-de Vries equation, and have
shown explicitly that the renormalization can be carried
out not only for the one soliton state, but also for the
system with an arbitrary number of solitons. Thus} we
are now standing at a position where we can investigate

dynamical properties of the renormalized soliton systems

on firm ground.

IV. Self-modulation of strongly dispersive waves.
We now turn our interests to phenomena of self-modulation
of a quasi-monochromatic wave in strongly dispersive
region such as the electron Langmuir wave, the ion plasma
wave and the whistler wave in magnetized plasmas. The
problem has close connection with such phenomena of
self-focusing and self-contraction of wave packets in
nonlinear opticﬁ, and modulation-instability of the

gravity waves on water. 1In collisionless plasmas, it is

N

- 11 -



well awared by us that the resonant wave-particle inter-
action at the phase velocity causes very different
nonlinear modulafion associated with the trapped particles.
Nevertheless, we develope our disscussion for a special
case in which the trapped particles do not give rise to
appreciable effects. |

Taniuti et al [19] have presented a systematic analysis
of the nonlinear ﬁodulation of a quasi-monochromatic wave
by examining a system of equationsr

5

) ] _
-5-EU+A(U)5—§U+B(U)—0 , (25)

where U is a column vector with n-components u;, u,, °*°°

u, and.A an n x n matrix and B a column vector. The set

of egs.(l.a)v(1.d) can be reduced to the standard form by
setting —-3y/3x = E. It is assumed that (25) has a constant

state solution Uy, which satisfies
B(Up) =0 . (26)

Considering a plane wave of infinitesimal amplitude
propagating in the constant state U,, we assume that U

can be expanded about Uy as

U=U, + I I ¢ UK(n)(E,T)exp[il(kx—wt)],
(27)
where € measures the size of perturbed amplitude and

(£,T) are the stretched space-time variables defined as

wy
I

€(x = At) ’ (28.a)

i

T = g2 t . (25 . b



Substitution of egs. (28.a)v(28.b) with (27) into the
original equation (25) yields a set of equations corre-
sponding to the each brder of powers of £ and the 2-th
harmonic component. 1In the first order of € , the linear

dispersion relation

det[+i(wI - k A(Up)) + qu(U)u=u0] =0 , (29)
assures that Ui%) can be expressed as
vl (€, =y E0r (30)

with the right eigenvector R given by

[Fi(oI - k A(we)] + ¥ B(w) _ IR=0 , (31)

and Uél) = 0 for |&] # 1. 1In the second order of ¢ ,

the =1 component yields a condition

(32)

to deal with nontrivial case auf})/ag # 0. The 2=2 and
2=0 component of the second order equation determines the
second order beat wave Uéz) and Uéz), respectively.

Finally, at the third order of € , the £ =1 component

gives rise to the nonlinear Schrddinger equation,

Pgr Vv *tPay v +talvl®y =0, (33)

where p=(1/2)93%w/0k? represents the dispersion effect,
while q measures the strength of nonlinearity. For the
ion plasma wave propagating in a system described by

eqs. (l.a)n(1.4), we get [20]

- 13 -~



3 .
P = ——Z-w(;—))" r (34.a)

) 1 k2~ " " w®
a=35 -7~ 357"+ 3% * 3x5 ~ 3%

b1 Ei(1+ 91)2] . (34.b)

1-(w/k) ? k? k?

Since q given by (34.b) is positive, the coefficients p
and q take the opposite sign.

When pq < 0, finite amplitude plane wave is stable

against modulation. For this case, setting
i (&
v = Vo(E,1) expl 5 J o(g',t)dg'l , (35)

we obtain the following soliton solution,

I

p(£,7) = po [1 - A sech? 5 A7 (g0, 011, (36.a)

o(£,7) = A, 3 c(1-a) ' /*[1-a sechz{ééA‘/z(g-xiT)}]“l,

(36.b)

with ,
A, = cerc -/, (36.¢)
cC = (- 2pqg po)l/2 . (36.4)

This'type of envelope soliton is called as a dark soliton
reffering to the nonlinear optics.

On the other hand, when the coefficients p and g take
the same sign, i.e., pg > 0, the wave is modulationally
unstable in the sense that the finite amplitude plane
wave breaks up'to a train of solitons. For this case,
eq. (33) has a envelope-soliton solution, which satisfies

the boundary condition that ¢ (&,7t) and its derivatives

- 14 -




vanish at &=t~ ,

¥(E,T) = A sech [(fp-)‘/zA( £ - vo)l .
2
explilyh £ - o1+ 3 g a?n] (37)

where an arbitrary constant V defines the velocity of
the envelope soliton.

Now, it has been emphasized.by Ikeéi and Kiwamoto [21]
that nonlinear Landau damping processes play important
part in the phenomena of nonlinear propagation .of the ion
plasma wave. Therefore, we have examined carefully
contribution of the resonance particles at the group
velocity by formulating the problem on basis of the Vlasov
description of collisionless plasmas, [22]. It has been
found that the wave-wave-particle resonant interaction
modifies drastically contribution of the slow beat wave,
i.e., the second order £=0 component ih the expansion
scheme of eq.(27), and gives rise to the modified nonlinear

Schrodinger equation with a nonlocal-nonlinear integral

term,
. 3 82 ' 2
Lo v+ pger v +alyl?y +r2f LELOIE 0, o
0T 0& m .
£ - &
(38)
The linear stability of (38) can be examined by
linearization of (35) given as
p = po + {Spexp(i(KE - Q1 )] + complex conjugate} ,
(39.a)
o = {soexp[i(KE - Qt )] + complex conjugate} R
(39.b)

- 15 -



The dispersion relation reduced from (38) determines

Q = Qr(K) + 1T (K) ,
where
r V2

=1
1l

V2

1
T—I[{(p?K2-2pqgp,)? +(2prp,)?

y/

(40.2a)

(40 .b)
2—(pZKZ-qupa)ll/leI

(40.c)

In the small amplitude limit |p/2gq|K? >> p, , this is

reduced correctly to the nonlinear Landau damping process,

in which the wave energy is transformed from the higher

frequency side band to the lower frequency side band.

When pg > 0, eq.(40.c) takes maximum growth rate

— 1 /2
I, =+ (@> + r?) / Po

with the maximum frequency shift

1/2
o = * g (@ + r2)*? o,

for the value of wave number

K = {(q® + r’z)/pq}l/2 Voo

m

(41.a)

(41.Db)

(41.¢)

Oon the other hand, if pg < 0, in the large amplitude

limit of po >> |p/2q|K?, egs.(40.b) and (40.c) take

the asymptotic values

ko)
il

o=t (q2+r2) /% +|q|}/? /BT X7 o (42.a)

Po= T (@24 —lay? STRIR B (42.1)

Above analysis illustrates that the contribution of

- 16 -
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wave-wave-particle resonance at the group velocity leads
to modulational instability regardless the sign of pq.

Experimental investigations of the modulational insta-
bility was carried out for the ion acoustic wave [23].
Fig.5 shows a transition from the linear to nonlinear
propagation of ion acoustic wave packets in the typical
low'pressurs Argon plasma, (1&2)x10_“ Torr, with
n=(1v2)x10° em™?, T_=(L512.0) eV and T /T;=10v12.
The initial profile of an envelope has 30 usec duration,
in which the amplitude increases linearly in the first
10 usec, then is kept constant for the sussequent 10 pusec
and falls down linearly to zero in the last 10 usec. The
carrier frequency is about 0.5 wpi' Wave packets are
excited in a plasma by a conventional grid exciter and
are recieved by a plane probe at 9 cm from the grid. For
a small amplitude of exciting voltage, Vex = 1.5 V, the
recieved wave form resembles the input one, except that
the frequency in the envelope tail is slightly higher
than that in the front, indicating manifestation of-the
dispersion effect. The profile of the envelope changes
drastically when the amplitude of wave packets increases.
That is, at VeX = 2.0 V the wave front steepens, and
then the modulational instability sets in as can be seen
from the wave patterns at Vex = 3.0 V and Vex = 4.0 V.
In the bottom trace, the initial wave packet is divided
into three parts and the amplitude of the first region
is largely enhanced.

Let us make an important remark on the largest wave

packet in the bottom trace. We recognize that the

- 17 -



frequency in the region A where the amplitude builds up
with time is higher than the frequency in the region B

~
where the amplitude diminishes with time. This shift in
frequency indicates that the large amplitude wave propa-
gates more rapidly than the small amplitude wave, providing
an evidence for the nonlinear dispersion effect. The
group velocity dispersion of the ion wave, on the other
hand, makes the velocity of the high frequency part (region
A) slower than that of the low frequency part (region B).
Thus, as a result of competition between nonlinear
dispersion and group velocity dispersion, the modulational
instability takes place in the ion wave propagation.
This is the reason why we have observed the modulational
instability of the ion wave. In the bottom trace, the
frequency shift is found to be |Aw/uw,|=0.15, which is
about two times larger than the shift calculated from
eq. (40) . This discrepancy is plausible, because, in the
experiment, the envelope amplitude damps spatially and
there exists ambiguity in determining the amplitude
experimentally.

Recently, Ikezi et al [24] have examined the modulation
of ion waves, and concluded that the modulational insta-
bility does not take place, but effects of trapped particles
are essential. In order to clearify the discrepancy
between their observation and our results, it is necessary
to re-examine experimental condition such as effects of
ion collision, presence of noise in a plasma.

Having shown an experimental evidence of the nonlinear

wave modulation of the ion plasma wave, we close discussion



of the present secfion by illustrating results of numerical
analysis of eq. (38) S?rried out by Yajima et al, [25].
Restricting our interest to the case of pqg > 0, we examine
how the envelope soliton given as (37) deforms under the
action of the nonlocal-nonlinear integral term of eq. (38).

Fig.6 shows the numerical solutions of eqg. (38) with

initial value
Y(E, 1=0) = A sech[(i‘%)‘/2 A £], (43)

where we take A=g=2p=1 for simplicity. The value of r is
arbitrary chosen to be r=0.5. We can see that the soliton
deforms in asymmetric way and comes to run towards the
positive direction. Fig.7 shows effects of nonlinear
Landau damping on bound state of envelope solitons. Eq.
(33) has a solution

cosh (3Bg) +3cosh (Bg)exp (4igA?t)

v(&,T )=4 A expligA?21/2]
cosh (4B) +4cosh (2BE) +3¢os (4qA?T)

(44)
which satisfies the initial condition
V(E, 1=0) = 2 A sech(BE) (44.a)
B = (q/2p) /% . . (44.b)

This solution does not decay into a train of solitons,

but pulsates with a period w/(2qA2). Numerical solutions
of eqg.(38) for the initial condition (44.a) indicate that
solitons bounded in its initial state are made to be free,
and each solitons travels with changing theif shape and
velocity. Associated with the gain of velocity of soliton,

the resonant particles at the group velocity will be

- 19 -



ejected to the opposite direction as a bunch of particles.

V. Circular poralized nonlinear Alfvén waves.
Investigation of proporties of the Alfvén waves in a
gaseous plasma attracts particular interests in connection
with search‘for useful methods to heat a plasma, [26].

In the problems of space physics, large amplitude
incompressible magnetic field .perturbation observed in

the solar wind has been attributed to propagation of the
Alfvén wave, [27], and has inspired theoretical analysis
of possible existence of an exact solitary Alfvén wave,
[28].

In their systematic analysis of nonlinear hydromagnetic
waves, Kakutani and Ono [29] have shown that, as far as
the waves are propagating at an angle with a uniform
external magnetic field, the nonlinear magneto-acoustic
wave is described by the Korteweg-de Vries equation, while
propagation of the nonlinear Alfvén wave is described by
the modified Korteweg-de Vrieé equation. However, it has
been noticed firstly by Kawahara [30] that when the
hydromagneﬁic wave is propagating along the external
magnetic field these equations cease to be valid, because
the dispersion relations for the magneto-acoustic wave
and the Alfvén wave are degenerate in the long wave length
limit for the parallel propagation. He obtained a modi-
fied type of nonlinear Schrddinger equation. Since the
equation derived by Kawahara represents a new type of
evolution equation, we will describe briefly derivation

of this equation, and then discuss its stationary exact
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solutions, which represent new types of envelop solitons.

Neglecting the effects of displacement current and
charge separation, we can reduce the system of equation
for cold plésma to the fundamental equations for one-

dimensional propagation in dimensionless form,

2

20+ mw =0 , (45.a)
a-(-i{__- u+ nt —éa; {%(BYZ +‘ Bzz)} =0 . (45.b)
é% v - n ! é% BY = - Re_1 a‘%,:(n—1 g% B,) . (45.c)
sv-ntgs =8 L B,) (45.4)
é% By - g% v F By g% u = Rzl g%(é% w) o, (45.e)
%BZ—%W+BZ%u=—RII%(a%V) , (45.£)

where d/dt = 3/3t + u*3/9x , v = (u, v, w) denotes the

velocity of electrons, n the density of electrons,

B = (BX=1, By’ Bz) the magnetic induction vector, Ré and

R, represent ratios of the electron and the ion cyclotron -

frequencies to the characteristic frequency, respectively.

The above system has a linear dispersion relation

% 1 + uk , | (46.a)
where
__!__ -1 _ -1
H o= 5 (Ri Re ) . (46.Db)

The double sign * designates the right (+) and left (-)

polarized Alfvén waves, of which amplitudes are given as
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¢ =B_-iB_ -, (47.a)

L

i

BY + i BZ ’ (47.b)

respectively. As for stretching of the space-time
variables is concerned, in accord with the linear disper-
sion relation (46.a), we introduce the stretched space-

time wvariables
E=¢€¢ (x-1t) , (48.a)
T= €2t , (48.b)

assuming k ~ O(g). We expand the variables, on the other

hand, in accord with Kakutani and Ono as

(1)

n=1+c¢€en + €2n 4 e (49.8)
g = e ulD) 4 oe2402) 4oLl (49.b)
v = 51/2 (v(l) + € V(Z) + 000 ) (49.c)
v = L G S A (49.4)
5 - L1/2 . 1 4 en (2) ... (49.¢e)
y y Y .

I L1/2 (B (L, . Bz(2) + e (49.f)

Z z

Substituting egs. (49.a)~(49.f) with the transformation
of eqs.(48.a)¢(48.b), we get the following relationships

among the first order quantities,

v (50.a)

(1) (1) 1

n = u =5 (B (50.b)



Eliminating the second order quantities from set of
equations at the order of 55/2, we obtain simply the
nonlinear evolution eYuation for the right polarized

Alfvén wave

3 1 2 » _
ot %r T 73g Uegl® ol - du g e =0 ., (5l.a)
and for the left poralized Alfvén wave,

3 13 Y _
ot Lt aae Ulegl® o) +duggr e =0 (51.b)

where ¢R and ¢L are the first order amplitude of egs.
(47.a) and (47.b), respectively. These nonlinear evolu-
tion equatibns have been rederived by Mio et al, [31].
They have carried out analysis of the modulation insta-
bility of the Alfvén wave on the basis of egs. (51.a) and
(51.b).

It would be worthwhile, however, to Present here exact
steady state solution of egs. (51.a) and (51.b).obtéined

by Wadati et‘al, [32]. Substitution of a form
o(E,7) = VB Y(E,1) expl ix(g,1)} (52)

with real functions ¢ and y into eq. (51.a) yields a pair

of coupled equations for Y and x:
+ 2y, + 2 + = | ' .
+ 3 _ + 2 - . .
X ¥+ 2 X,V H Vg HXTgb =0 (53.b)
We seek a solution in the following form,

X(E, 1) = uT(RE - Qr) + o(y) , (54.a)
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v(E, 1) = Y(y) . ' (54.b)
with

y = u"1 (E - At » , (54.c)

where wave number K, frequency £ and propagation velocity
A are constants to be determined from solutions of (53.a)
and (53.b). Under the conditions of egs.(54.a)%(54.c), we

can obtain

4a 2 — — ab 3. 1l _ory2 w2 182
(dyq>) oY + 220 4{5‘2+A+4()\ 2K)? -K* }9
+ 4B % - 4A? (55.a)
dg - A 1 - -3
?1?9 =3 *3 (A - 2K) 5 ® (55.b)
where
a(y) = 92 (y) . I (55.c)

and, A and B are integration constants. Restricting our
interest to solitary wave solutions which satisfy the

boundary conditions

o(y) > 09 = Yo? , , (56.a)

d
& 0 : as |y| > = . (56.b)

we can specify the integral constants and the shift of

carrier frequency as

N =

3
A ‘2_¢02"

it

( A - 2K)o, , (57.a)
3 1 2 l 2 .
B =4 ¢,° + 5 (12K - 51) %, + 2(K - EM ¢y , (57.b)

Q = K2 + 2 K 9, . (57.c)
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Straightforward but lengthy calculation gives

. 2 ]
o(y) = Vi(y) = &, + sKg [km + cosh(2y(y-yo))1 /2,

(58.a)

o (y)

e(yo)_- 3k tan ! { i;zﬁ tanh(y(y—yo))}

- y’&tan-l'f‘/i::i tanh(y(y-ye))} » (58.b)

where

K= *1 ' (59.a)
S P =2

g =2+ 8 E%? and m=g , (59.b)

@ = 2(20, - A) ] ' (59.¢)

B=4{(2 + K (X-K-=- 20, )} /%, (59.4)
-1 1/2

Y=3 {(x =22 = 2)} (59.e)

§ = sign of (3 ¢, - A + 2K) A (59.f)

The propagation velocity A is allowed to take a value in

the region of

A <A< A, (60.a)
where - : '
X2 = 2(K + 28,) + 2/F, (3, F Ky .  (60.c)

A similar analysis is possible for the left polarized
waves. In the case, solitary waves are obtained just by

replacing
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2 > - Q . and K -~ - K (61)

in the above expressions, eqs.(59.a)&(59.f) and eqgs. (60.b)
and (60.c). Then, we have an extra restriction on the

wave number,
b, > K . (62)

As can be seen from.eq.(58.a), k=+1 designates bright
modulation while «=-1 dark modulation of the amplitude,
respectively. Egs.(58.a) and (58.b) represent that
modulation of the amplitude is closely coupled to modula-
tion of the phase. Furthermore, unlike the envelope soliton
given by eqg.(37), the propagation velocity A of the
solitary wave (58.a) and (58.b) is not an arbitrary
constant, but it is restricted to a region defined by
egs.(60.a)v(60.c). These properties are quite unique and
could be detected by experiment. In Fig.8 referring to
the right polarized mode, we illustrate the bright Alfvén
solitary wave and the dark Alfvén solitary wave for
arbitrary choosen parameters of u , X and QR'

Besides the solitary waves discussed above, egs.(51l.a)
and (51.b) admit also algebraic solitary'waves. For the
right polarized Alfvén wave, we get

4 v
4 + y2(y-yo)?

¢éa)(y) b, + (62.a)

it

0l (y) = 0(ye) + & tan”' (e(y-yo))-3 tan” (F(y-yo))

(62.b)
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where

Y = 4(% + K) + 468 /3,(¢; + K) , (63.a)

€ = % [2 /3, + K + 6/3, 17! /3, , (63.b)
+ 1 for A+
-1 for ,A_ ’
and the velocities A, are defined as
A, = 2(20, + K) * 2/3, (%, ¥ K) . (64)

Fig.9 illustrates the algebraic solitary Alfvén wave with

the right polarization at the velocity A, and A_,

respectively. For the left polarized Alfvén wave, we get

@L(a)(y) = 0, + 4 v (65.a)
4 + y2(y - yo)?
o, (¥) = olye) - tan M (ely - yo)) + 3 tan” G(y-ya))
(65.b)
where
Y = 4(@0 - K) + 41/@0(@0 - K) (66-3.)
£ = % [2/3, =K + /3, 17 /&, (66.Db)

with the velocity

AL = 2(2@0 - K) + 2/@0 ((Do - K) . (67)

An algebraic envelope of the left polarized solitary
Alfvén wave is shown in Fig.10. The figure indicates

that contribution of a term with sin x(&,1) is relatively
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large for this mode.

We now close this section by emphasizing the above
described peculiar pfgperties of the solitary Alfvén
waves are not known for any other types of nonlinear
evolution equations.

V1. Concluding discussions

In the preceeding
sections, we have discussed very fundamental aspects of
solitons and envelope solitons in colliéion;ess plasmas,
restricting ourselves to their simplest forms. Our main
purpose is firstly to emphasize that the theoretical
studies of structure of the dressed solitons provide
refined physical pictures on the nonlinear wave phenomena.
Effects of the nonlinear wave interaction are classified
to

1) the self-interagtion effects, of which the lowest
order terms are essential to realize the solitons or the
envelope solitons, while the higher order terms sho@é be
renormalized so as to remo?e the secular behaviour, and

2) the nonlinear "modg"—"mode" intefaction effects,
which are responsible to characterize dynamical processes
of the nonlinear wave "mode", such as the solitons or
the envelope solitons.
Observed characteristics of the nonlinear wave phenomena
will be subﬁect to systematic anaiyses on the basis of
conserved properties of the renormalized soliton cores:
and dynamical distortion of the coulds surrounding the

cores.
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Secondly, reffering to the ion plasma wave, we have
discussed nonlinear wave modulation of the strongly
dispersive waves with_account of the effects of resonant
particles at the group velocity. These parficles are
expected to play important role in heating processes of
plasmas.by large amplitﬁde waves. Higher order effect§
on the envelope solitons have been discussed by us [33],
and recently Kodama [34] has presented a renormalization
procedure for a model system describing a strongly
dispersive wave.

Thirdly, we have presented some detailed discussions
on a new type of nonlinear evolution, which has been
derived for the circular polarized Alfvén waves. Rigorous
steady state solutions present quite exotic enveiope
solitons. Since this equatian has not been examined so
far on the frame-work df the inverse scattering method,
we call attentions of theoretical researchers working in
this field.

We conclude present paper that now the self-interaction
effects of coherent nonlinear waves have been well
understood owing to advancement of theoretical studies.
These coherent nonlinear waves will be also playing.'
crucial role in the anomalous transport processes
encountered in various high temperature plasma aevices,
where the processes have been phenomenoldgically treated
on a basis of the concept of quasi-linear theofy. Although
we admit practical convenience of these approaches for
supplying a conceptual guidance, theoretical endeavor for

deeper understanding of the fundamental properties of
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nonlinear wave phenomena is indispensable to establish
the solid grouds for researches of such complicated

nonlinear wave-particies system as collisionless plasmas.
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Caption of Figures

Fig.l. Propagation Qf nonlinear ion-acoustic wéve.

The top trace is an applied pulse. The lower
traces represent subsequent decomposition of the
induced perturbation into a precursor (indicated
by arrows) and solitons at the distances indicated
on the right.

Fig.2. The soliton velocity as a function of amplitude
of the density perturbation én/ny,. The bars are
experimental results taken from the reference [5].
The broken line with dots is for the Korteweg-de
Vries soliton. The dotted lines are curves
Calculated for the reference [13] with arbitrary

parameter of B=Te/Tt, where T, 1is temperature

t
of trapped electrons. The heavy curves are
results of the reference [14].

Fig.3. Collision process of two dressed solitons with
A; =0.3 and A,=0.24, represented by the heavy
lines. The thin lines indicate the Korteweg-de
Vries soliton cores, while the dotted lines
represent the second order clouds.

Fig.4. Structure of renormalized dressed soliton. The

heavy line represents shape of eq.(24.a) for

A

il

0.3, while the thin line is eq. (24.b) and
the dotted line eq. {24.c), respectively.
'ig.5. Nonlinear modulation of ion-acoustic wave packet

observed in the reference [23].



Fig.6.

Fig.7.

Fig.8.

Fig.9.

Fig.10.

Temporal evolution of the envelope soliton under
action of the wave-wave-particle resonant
interaction.

Effect of the wave-wave-particle interaction

upon the bound state of three envelope solitons.
The left figure shows evolution of envelope of
eq. (44), while the other two figures represent
distortion of the envelope due to the nonlocal-
nonlinear term of eq. (38).

Envelope solitons of the right polarized Alfvén
wave for arBitrary values of parameters p=0.5,
with ©,=0.5 and K =0.01. The upper trace is
for the bright (x=+1) and the lower trace for the
dark (k=-1) envelope solitons, respectively. The
dotted line represents the real part of w(E}T)
exp(ix(&,t)) .

Algebraic envelope solitons of the right Alfvén
wave.

Algebraic envelope soliton of the left Alfvén wave.
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