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Abstract

The structure of electromagnetic perturbations in a
magnetic neutral sheet is analyzed within the framework of
Vlasov-Maxwellian picture. In reference to Harris' equilibrium
state, a boundary value problem is formulated and solved to
give the possible existence of a low-frequency electromagnetic
wave of compressional mode, propagating along the electron-
drift current in the sheet. The stability of this mode is
critically dependent on the thickness parameter of the sheet.
If the sheet is thin enough, the perturbation will grow even
for Te=Ti’ The critical thicknesses are calculated with
regard to various temperature ratios and-their values are found

*

*
to be about 0.9 r.; or less, where r;i means the ion Larmor

radius just outside the sheet region.



1. Introduction

The magnetic field configurations with neutral sheet
structure (or the state where another component of the field
exists) can be found in a wide range of plasma physics; for
example, sun spot magnetic field [1, 6-10], geomagnetic tail
[2, 11-14], neutral sheets or points of laboratory plasma [3,
4] and tokamaks [51. At such configurations effective
conversion of magnetic energy to thermal energy of plasmas
occurs. The change of the topology of magnetic fields, the so-
called reconnection process, plays a main role in this
efficient energy conversion.

The phenomena of neutral-point discharge [6] have long
attracted the astrophysicists. The first MHD model of this
dynamical dissipation process was proposed by Sweet [1] and
critically examined by Parker [7] for the explanation of the
large amount of the released energy and rapid reconnection
rate. The model was further developed by Petschek [8] and
Friedman and Hamberger [9]. The basic idea of these models is
that the reconnection is caused by the plasma flow towards the
magnetic null plane from both sides of the neutral layer. The
neutral point is thought to become highly turbulent or
dissipative due to microinstabilities [9]. Then the magnetic
field lines are reconnected at the neutral point. This idea
was numerically examined by Yeh and Axford [10]. The amount of
the dissipated energy and the reconnection time scale are
considered to be controlled by the outer conditions of the layer

because the energy source is the plasma flow towards the null



point from the outer region.

There exists another problem that is the thinning of the
neutral sheet before the onset of the reconnection process.
This phenomenon was observed in the geomagnetic tail [2] and in
a laboratory [3]. In the geomagnetic tail the plasma sheet at
about 15 Rp (earth radius) far from the earth is reduced in its
thickness to about 1 RE. In the laboratory experiment the
thickness of the current sheet becomes as thin as about the ion
Larmor radius just before the occurrence of the abrupt
destruction of the sheet. Relating this phenomenon the
instability in the neutral sheet must be investigated. Tearing
mode has a difficulty to explain the abrupt destruction of the
sheet because the sheet can be stable in much longer time than
that expected by the tearing mode theory [3]. Furthermore the
nonlinear theories [11, 12] show the tearing mode can be
stabilized at very small level of the turbulence. Schindler
[13] proposed the theory of the ion tearing instability, which
was recently developed and applied to the magnetic substorm by
Galeev and Zelenyi [12, 14]. For the occurrénce of the ion
tearing instability, the normal component of the magnetic field
to the null plane is necessary. Its strength to trigger the
instability is restricted within a certain range and in the
other range the ion tearing mode does not exist even when the
sheet thickness is thin enough.

In this paper we show that the thin sheet becomes unstable
against a mode which is different from the tearing mode.
Considered is the magnetically compressional mode that is

propagating perpendicularly to the magnetic field lines. The



instability of this mode is examined with regard to the sheet
thickness within the framewark of Vlasov-Maxwellian picture.
Detailed behavior of particles near the null plane is considered
and those ions with meandering orbits are shown to play an
important role in triggering the instability. The obtained
dispersion relation 1is estimated numerically and analytically.
We show the mode becomes unstable when the thickness of the

sheet is reduced to about the order of the ion Larmor radius.

2. Equilibrium configuration and particle orbits

Consider a magnetic neutral sheet of plane configuration,
and take a coordinate system whqse X-axis coinsides with the
normal to the sheet. (Fig.l) A background magnetic field §
is assumed to be parallel and antiparallel to the z-axis for
x>0 and x<0, respectively. On the yz-plane at x=0, which is
referred to as the null plane, the magnetic field vanishes.

The configuration can be described by a vector potential ~O=(O’
Ao(x), 0), with a magnitude function Ao(x) having its mimimum

at x=0, since
B, =V xA, = (0, 0, dAo(x)/dx) . (1)

The motion of a plasma particle in this equilibrium
configuration is characterized by three constants of motion,
i.e., the y- and z-components of canonical momentum and the
kinetic energy, because the magnetic field is only dependent on

v.. and

x and no external electric field is considered. If Vot y

v, are the velocity components of a particle of species j (ion



or electron) with mass mj and charge ej, then it is convenient
to define the following quantities, both having the dimension

of velocity,

1/2
e = (vx2+ vyz) / ' (2)
p = sjvy + eAO(x)/mjc . (3)
Here sj= sgn(ej), e=|ej| and c¢ is the velocity of light. (The

ions are assumed to be singly charged.) The quantity e denotes
the velocity perpendicular to the magnetic field, and p is
proportional to the canonical momentum in the y-direction.

An equilibrium distribution function in the neutral sheet

configuration was given by Harris [15] in a drift Maxwellian

type,

_3/2
3/ exp{-(e?-2s.,
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U.p+v_2+4U.2%)/2v. 2%} 4
] LA IR S IR ALY
where n, is the number density of the plasma particles at the
null plane. The thermal and drift velocity of j-species are

denoted by vj and Uj' respectively. The charée neutrality

condition implies

Ue/Te = —Ui/Ti , (5)

where Tj=mjvj2/2 (J=i,e) is the temperature of j-species.
The distribution function Fj is substituted into Maxwell's
equations and gives the equilibrium vector potential

cT,

éo(x) = e 2

x
ey log cosh 3 (6)

e|u; |

where the half-thickness of the sheet A= /7(c/|Ui])AD is



defined in relation to the Debye length AD=[Ti/{(l+Te/Ti)X
X(4nn0e2)}]1/2. From this potential the magnetic field is

derived,

§0(x) = gz{8ﬂn (Ti+Té)}1/2tanh(x/A) . (7)

0

The particle density is distributed in space as

n(x) = sech? (x/\) . (8)

%o
These equilibrium solutions are shown in Fig.l. The thickness

of the plasma sheet is now related to the drift velocity by

rr./h = 2lu. /v (9)
Li 2'71 i !
* .
where i is the ion Larmor radius far outside the sheet region
*
= —>00
res Vimic/eBO(X ) B

The ratio (9) plays a crucial role in our argument concerning
the threshold of the electromagnetic instability at the sheet.

It can be shown that the particle orbits in such a neutral
sheet is classified into two groups [l16]. Since vx2 is

positive, the allowed region is defined in (€, p) space from

(2) and (3)
e>lp-na;00[ . (10)
where Aj(x) = EEE Ao(x) (Fig.2). This implies that for given
J

€ and p, the particle motion is bounded in a finite range of x-
space. In the case of

0 <p-¢ ,



each particle has two turning points, x, and x in the same

1 27

(positive or negative) x-half plane (region II in Fig.2),.

This kind of orbits are called "non-crossing orbits", since

these particles never cross the x=0 plane. If on the contrary,
P -¢e< 0

holds, the two turning points are situated symmetrically on

both sides of the null plane (region I in Fig.2), They are

and -x

given x This kind of particles can go back and forth

1 1°
across the magnetic null plane. The orbits of this type are
called "meandering orbits". These two groups are shown in
Fig.3. The meandering orbits are proper to the magnetic
neutral sheet and have some remarkable characteristics.
Firstly, the drift velocity can change its sign according tgo
values of € and p. Secondly, when the electric field is
present along the y-axis, the meandering particles‘are
accelerated and run in the y-derection in a similar way to the
case of no external magnetic field. The hybrid behavior of the
meandering particles, i.e. partly like gyrating particles and

partly like free particles, is essential when we consider the

perturbation in the neutral sheet.

3. Derivation of the wave equation

When we consider the perturbation at the null plane, it is
necessary to deal with the kinetic equation because of the
effect of the finite Larmor radius. To avoid the complicated
characteristics of the kinetic equation, we convert the usual

velocity space to (€, p) space. Three components of the



velocity v are written in terms of the constants of the motion

(2), (3);

Vx T t[e?- {p - Aj(X)}2]1/2 = oW
vy = sj{ pP- Aj(x)} ' (11)
vV, =V,

where ¢ = sgn(vx).
Assuming that the collisional effect is negligible in the
neutral sheet, we get a linearized Vlasov equation in terms of

the zeroth order constants € and p :

2£3/dt+vle, p, AglCV £

-1
+(ej/mj){§@+c vie, p, Ajlxdg}'vvFj= o , (12)

where fJ is the linearized deviation of the distribution
function and §E, 6B are the perturbed electric and magnetic
fields, respectively. The three components of the operator VV

denote that

9 1l 29
__=O'W—_ p

BVX € d¢€

2 - B _ 10
va = sj 5D + sj{p Aj(x)} v (13)
9 - _9

14
sz avz
and vie, p, Aj(x)] is given by eq. (11). Though the external

magnetic field does not appear explicitly in eq. (12), its
effect is included in the quantity vle, p, Aj(x)] through the

term Aj(x)= (e/mjc)Ao(x).



In the present equilibrium given by eq.(4), all of the
zeroth order quantities are varying along x-coordinate but they
are uniform in y- and z-directions. Consequently we can make
Fourier-expansion of eq.(12) with respect to variables y and z,
and carry out the Laplace transformation with respect to time

t. Then we have a linear differential equation

J i o J
Bfkw/ax ioW {w kzvzkyvy[p, Aj]} fkm

I -1 : 3 (pm
= oW | (ej/mj){dgkw+c Y[e, P, Aj]Xngw} VvFj+fk(t 0)],
(14)
where suffices k, w denote the Fourier-Laplace transformed
quantities and fi(t=0) is the initial perturbation of the
distribution function. This equation has a solution
3 * arw
fkw(x;o) =0J dgw
*1

1 -1
[—(ej/mj){égkw+c vie, p, Aj]xagkw}-VvFj

+ £ (£=0) Jexp[ioo (x, £)1+C_expliod(x, x,)1, (15)

where

o(x,£) =

x w-k_v_-k s.{p-A.(x")}
J zz 'y i o] ax' . (16)

E W[El P AJ(X')]

C0 is an integration constant to be determined and Xy is an
arbitrary position of reference. The quantity ¢(x,f) describes
the Doppler shifted phase variation along the unperturbed
orbit. When x is equal to X, in eq.(15), we have
J . =
fkw(xll G) CO’ .

In general fﬁw takes a different value for a different ¢ and so



does Co' But when the constant Xq represents one of the
turning points, where W = 0 holds, fiw(xl; o=1) and
fgw(xl; 0=-1) should have the same value, because Vo vanishes.

Then we can replace Cc by € in eq. (15) if Xy is chosen as a

turning point. The same argument can be applied to the other
J

kw o=-1)

turning point X,, and the relation £3 (x

kw(XZ; o=1)=£f

2?
determines the constant C.
On the other hand the perturbed electric and magnetic

fields SE and 6B can be represented by a vector and a scalar

potentical, 6% and 6¢, as

-l
SE = -Vé¢- ¢ BSQ/Bt '
(17)
6B = V x &A
When we choose the Lorentz gauge
1
VedA + ¢ 038¢/0t = 0 , ' (18)
the wave equation is given by
2 -2 2 2 .
VS6A - ¢ 9°6A/3t* = -(4n1/c)j . (19)

The exchange of energy between waves and plasma occurs only
when the y-component of the perturbed electric field is finite,
because in the present configuration the current due to
electrons is the only candidate for the energy source. One of
the examples of such energy-exchange mechanisms is the
collisionless tearing mode [17]. The wave-vector of this mode
is along the magnetic field lines, and the electric field is
uniformly excited along the y-axis. Accordingly, this mode is

purely growing and has no threshold of the instability. Since

- 10 -



we are looking for the triggering action caused by the thinning
of the sheet, we analyze another perturbation. Considered here
is the mode whose wave-vector is directed along the electric
current.

Suppose the perturbed vector potential is given by

6A = ey SA(x) expli(ky-wt)] , (20)

where we write k instead of ky. The other components of the
vector potential are reasonably assumed to be negligibly
small. Using the relation (17) and the Lorentz gauge (18),

we write the electric and the magnetic fields

-(ck/w)dsa (x) /dx

SE = i(w/c-ck?/w)8A (x) 5B 0 (21)

0 ’ ddA (x) /dx

This is the magnetically compressional mode with a non-vanishing

electric field component in y-direction. In other words, this

mode is a coupled one of a transverse wave (GEX, 6Bz) and a

longitudinal wave GEy. Considering (21) and using the relation
3 . g=1)=fJ . g=- i

fkw(XZ’ o=1) fkw(xzf 0=-1), we can determine the value of the

constant C;

-1 (X -1 3
C=-(ej/mj)[sin®(x2,xl)] IJXZ diw giw[e, P Aj(g)]cosé(xz,g)
1

-1 -1
+(ej/mj){sjc aFj/8p+(ck/w)e aFj/Be}GA(xl) , (22)
where
J - 2,0y o =1 _ -1
o= (ck*/w) ~ke sj{p Aj(i)}][sjaFj/3p+(w/k)e aFj/Be]

x SA(E)+ fg(t=0) . (23)
- 11 -



Eq. (15) with eq.(22) gives the perturbed distribution function

j : _ -1 -1
fkw(x,o) (ej/mj){sjc BFj/8p+(ck/w)€ BFj/ae}éA(x)

X

. —1j .
+lq(ej/mj)J dgw gkwexp[lo®(x,g)]

*1
. -1 .

—(ej/mj)[51n®(x2, xl)] expliod (x, xl)]

X, 1 4
x[ agw gl cose(x,,8) . (24)

% w

1
The first term of eg.(24) is derived from the transverse
components of the perturbation, 6EX and GBZ. The other terms
represent the coupled effect of the longitudinal component
dEy and the transverse components. This effect is caused by
the inhomogeneity due to the sheet structure.
The wave equation (19) is finally expressed by introducing

the perturbed distribution function
a28a(x) /dx?+{w?/c2-k2+2)" “sech? (x/1) } A (x)

— 2 -1 _
= § Zsjmpj/(cno)J de dp dvZ W e(p Aj)
X -1 3.
x [ dEw gkw51n®(x,£)6A(E)
X
1

. -1(*2
+cos®(x,xl)[s1n®(x2,xl)]

X

dEW—lgiwCOSQ(XZ,E)GA(i)].

1 (25)

This is the integro-differential equation which must be

solved as an eigenvalue problem. The operator in the left hand
side (LHS) is the same as the one appearing in the equation of
collisionless tearing mode if one puts w=0 and replaces k by

kz' because the LHS comes only from the transverse component of

- 12 -



the perturbation quite similarly in situation to the tearing
mode. The RHS represents the perturbed current which is
derived from the coupled effect of the electromagnetic and the
electrostatic components. This perturbed current has a maximum
value at the magnetic null plane and decreases with the
distance from the plane. There are poles coming from the

second term in the square bracket, that is
@(xz, Xy) = nm (n=0, +1, +2, «oe¢ ) , (26)

In the case of homogeneous magnetic field, the integrated phase
@(xz, xi) can easily be obtained and the condition (26) reduces

simply to that of cyclotron resonances.

4. Approximate estimate of the orbit-integral

Now we consider the case where the phase integral is
sufficiently small, @(xz, xl)<<l. This is satisfied by the
approximation of low frequency. This condition will be given
later explicitly. As to this perturbation the first term in
the RHS of eq.(25) is much smaller than the second term.

The perturbed amplitude of the vector potential SA(x) has
its maximum value at the null plane, because a strong energy
exchange between particles and waves takes place near the
plane. 1In Fig.4 contour lines of the distribution function Fi
are depicted. This shows that the source term of eq. (25) is
mostly contributed by the particles situated very close to the
null plane, even in the case where the ratio A/r;i is as small

as or less than unity. Therefore, we may expand the amplitude

- 13 -



SA(¢) in the integrand of eq. (25) around £=0,
SA(E) = OA(0) + FEPGAM(0)+ fe+ . (27)

This corresponds to take a symmetrical mode with respect to x=0
plane. It can be shown that the anti-symmetrical mode does not
exist under the condition of small phase integral. Taking the
first term of this expansion, we can get a second order
differential equation from the wave equation (25), In general
the orbit-integral cannot be carried out analytically. An
approximation for the background magnetic field, however,
enables us to integrate this term.

In the vicinity of the magnetic null plane, |x]/A<<l, the
equilibrium magnetic field (7) varies linearly along the x-axis

as

Bo(x) = Bmax x/A (28-a)

and far from the plane, |x|/A>>1, the field strength becomes

almost constant
B, =B . (28-b)

Therefore our equilibrium may be devided into two regions; the
inner region and the outer region (Fig.5). 1In the inner
region, |x|§k , the field varies linearly and passes through
zero at x=0, while in the outer region, A<|x|, the field has

the constant value. The phase integral ¢(x xl) now can be

2’

calculated in both regions. 1In the outer region, the particle

orbits are circles and have no drift velocity, then we have

o (x

*
2I xl) = TTL‘j/wcj ’ (29)



*

where wcjz eBmax/ij' In the inner region there are two kinds

of orbits and the integral must be estimated separately in each

group. For the meandering orbits
o (xy, -x.)= - (272 { (w-s.ke)K(c)+2s.keE(k )} . (30-a)
1’ 1 hje Jj 1 3 177"
For the noncrossing orbits

@(xz, X,)= —{hj(e+p)}—1/2{(w—sjkp)K(K2)+sjk(e+p)E(K2)}.

1)
(30-b)

1

complete elliptic integrals of the first and the second kind,

where «.,%2= (e+p)/2¢, K2=K£1, hj=vj2/(|uj|A2) and K, E are the

respectively. When we compare eq.(30) with eq.(29), we see that
in the inner region the role of gyrofrequency w:j in the
homogeneous magnetic field is played by the quantity (w:jwb)l/z,
where Wy denotes the bounce frequency vi/x around the magnetic
null plane. Then the condition of the small phase-integral can

be given here explicitly;

* /2

1
w / (wciwb) <<1

The orbit-integral with respect to £ is the RHS of eq. (25) is
now carried out analytically. The final form of the wave

equation in this approximation is

dsz(x)/dx2+A-2{25ech2(x/A)—mZ}GA(x)=J(x;w,k)6A(0) '
(31)
where m?= )% (k?- w?/c?). The source term J(x; w, k) is given,

in the inner region,

- 15 -



J(x; w, k)= ;(2/cn0)ij2(uj-w/k)
J

o] p [e o] ) _ _
xJ deJ 4 dpf dv_s.e(p-h.x?){e?~-(p-h.x*)?} 1/z[ckzm
0 Py 2 ] J

—co ]

-1 -1 _
-kwy (e, p)c ] [w-kwy (e, P)] Fj(s, P, V,) (32-a)

where Aj(x) is written by hjx , ij2=4ﬂnOe2/Tj, pQ=—€+hjx2 and

pu=€+hjx2. In the outer region, on the other hand, the source

term is vanishing,
J(x; w, k) =0 . (32-b)

Now, in the inner region the particles drift perpendicularly to
the magnetic lines of force. The averaged drift velocity
during one bounce period is denoted by wD(e, p) in eq. (32-a).
Explicit forms of wD(E, p) are given as follows; for the

meandering particles
m-— — -_—
wp = S4E[1-2E (<)) /K(K))] (33-a)
and for the noncrossing particles

-1
w. = sj€[2K2 {l—E(Kz)/K(Kz)} - 11 . (33-b)

n
D

5. Solutions of the wave equation and the dispersion relation

In the outer region, where (32-b) holds, the wave equation
(31) is satisfied by the associated Legendre function of degree
1 and order m[18]. As for the boundary condition when x tends to

infinity, we put

out(

A X»> o) = 0.

- 16 -



Then we get a solution applicable to the outer region

m

x) = c;P [u(x)] (34)

SAout(

where u(x) = tanh(x/)) and m denotes only positive quantity.
The solution of the collisionless tearing mode has a similar
form to the present solution. On the other hand, the solution
in the inner region, where the source term J(x; w, k) is

present, is given by

§at0 (x) = {e,P] [u(x) 1+c50Mu(x) 11 6a(0)
X

+ GA(O)J G(x;n)J(x;w,k)dn . (35)
0

The propagator appearing in the integrand is

G (x;m) =M (2-m) /T (2+m) HQT T (x) 1PT [u () 1-PT [n (xBQT M (M 1}

(36)

where I'(z) is the Gamma function. The constants c2 and c3 are

determined by the boundary conditions at x=0;

salf(0) = sa(0) ,

asa*™(0)/ax = o .
Then the constants are given by

c,= —2‘mn‘/2{r(% - 2m) /T (1+ %m)}sin(%mﬂ) ,

C,= -21—mn'1/2{r(% - %m)/F(l+ %m)}COS(%mn) .

3

These solutions should be connected smoothly at the

boundary of two regions, i.e.
sa°9t (1) = sal™(n)

- 17 -



and

asa®%t () /dax = asa™ () /ax

should be satisfied. From these conditions we can get a

dispersion relation,

S TECSRDARE SN (THOOD Doy

m m A
=[e, (P )1} " egloy u )1 '+ jo (GG} I (e, k)dn]
x [cz{PT[u(A)]}+c3{QT[u(A)]}+ J G(x;n)J(niw,k)anl”

0
(37)

where prime denotes the first derivative with respect to X.
This is an exact but implicit form of the dispersion relation
for the magnetically compressional mode in the field structure
of Fig.5. To pick up the dominant terms in the RHS of eq. (37),
we drop the terms smaller than the order m(m<<1l). Then the

relation becomes

Q™01 71 1Ql tn ) 1/m ) -1 () / (=T () }7)]

A
=[0 J(n;w,k) [1+{u ) -1/p ) HuMm)~u X)) }ldn . (38)

The LHS of this equation represents the dispersive characteristics
of the mode. To evaluate the real part of the RHS, we take the
first dominant term and assume that the phase velocity is

slower than the ion drift velocity; mr/k<<|Ui|. It should be
noted, however that in our reference system ions are not at

rest but are drifting at the speed Ui‘ When we integrate

eq. (38) the contribution from such part of the meandering

particles that travel beyond the boundary, x=*A, may be included,

- 18 -~



since this will give little effect on the result. The
contribution of the noncrossing partiéles to the current
integral is found to be smaller than that of the meandering
particles. This implies that a gyrating (noncrossing) particle
cannot move so easily as a meandering particle does under the
influence of the perturbed electric field. So, we can neglect
the contribution of the noncrossing particles for the estimate
of the real part. Consequently the real part of the dispersion

relation, to determine w is given by
[QT [n (A0/u () =1 (1) / (1-Tu () }*) 1 /0T (0)

- =4 2 2 1/2 2 2
S g{/zx /(nc)}ij (|Uj|/vj) (Uj—mr/k)exp(—Uj /zvj )

X {(Ck/wr)aj+csj/vj} ’ (39)

where

_ 2 1/ srr 2 2
a.= (97°/16)2 T(5/4)1F1(5/4,1,Uj /2Vj ) '

- _ 2 ~1/2 ) 2
Bj— Sj(4lﬂ /48) 2 1"(3/4)1Fl(3/4,l,Uj /ZVj )

and lFl(a,b;z) is the confluent hypergeometric function.
Here we have assumed that wr/k<<c, |Ui|/c<<1 and vj/c<<1. It
should be noted that the eigenmode obtained here are concerned
with both electrons and ions. This exhibits a remarkable
contrast to the collisionless tearing mode which is related
only with electrons.

The imaginary part of the current term comes from the
pole,wr/k=wg’n. Both ions and electrons of the meandering

orbits can couple with the perturbed field and exchange their

- 10 -



energies.As to the noncrossing particles, however, both species
do not couple but only one, because each of them is drifting in
a definite direction: when the phase velocity is positive the
noncrossing ions couple but when the phase velocity is negative
only electrons do. The ratio of the contribution from the
noncrossing particles to that from the meandering particles is
at most (me/mi)l/u, so that a major role in the energy exchange
between the plasma and the waves is played by the meandering
ions and electrons. The particles, which are traveling through
the boundary x=*)X, will make a small but finite contribution to
the imaginary part of the dispersion relation. If this
contribution is not negligible, its effect on the growth rate
calculation must be taken into account. But the relative
influence of this effect is numerically estimated to be a few
per cent, so that we can neglect it for the present consideration.

With the assumption

vl<<lul
we can obtain the growth rate of the magnetically compressional
mode along the current sheet,

Yy = mlw, | [§Cj(Uj—wr/k)Ij]/v ' (41)

where
—s/2(%
I.= v /

: de{R(R,)+H(s.w_/k)K,R(K,)}
i 3 ler/kl 1 jor 27 2t

R(K)=€l/2K(K)3(8,Sjwr/k)exp[—{EZ—ZSjUj(2K2~l)€}/2vj2] ,

F(e,x)=8c,% (1-k2) /{4(1-k3) x/e+(l-x/e)?}

- 20 -



3 /8 14 2 2
-Ce=(Ti/Te) (me/mi) exp(Ui /2vi ),

V = —-{ § sjzjajTj(kUi/wr)/Ti+Biwr/kvi} .

. v . . "N
and Ky 1s read as Ky for meandering particles, «

1
2

noncrossing particles, El and %2 satisfy the equations

for

m,Nv o, nnNo . . C sy
wD(Kl)—wr/k, wD(Kz)—wr/k, respectively, H(a) is the Heaviside's

function

H(a) =
o , a<?ao .

Because the mode has its phase velocity between the drift

velocities of ion and electron;
Ui < wr/k < Ue ’

the term relating to electrons is positive and that relationg
to ions is negative. Then it can be seen that the drifting
electrons give their kinetic energy to the wave and cause the
instability in the magnetic neutral sheet while the ions

absorb the energy from the wave.

6. Analytical and numerical estimates of growth rate

We can analytically solve the real and the imaginary parts
of the dispersion relation in the extreme cases.
In the case of the small drift velocity, i.e. |Uil<<vi'

eq.(39) is explicitly solved to give the following two branches:

- 21 -



- 3/ 1/
wr—kUi+k{0.35[l+(Te/Ti) (me/mi) ]vi

+/7(r;i/k)(l+Te/Ti)—l/2V;} , (42)

and

N l/u
wr—kUi - k(Teme/Timi) Ui ' (43)

where v; is the Alfvén velocity outside the sheet region. The
mode (42) is propagating in the electron-drift direction while
the other mode (43) is in the ion-drift direction. The phase
velocity of the latter mode, however, hardly satisfies the
condition wr/k<<|Ui|. Therefore we only consider the former

mode as meaningful. The damping rate in this case mainly based

on the ion contribution and is approximately given by
.- -3/ 1/
Y = -0.2 [1+(T_/T;) (m_/m,) kv, . (44)

Both the real frequency and the damping rate depend on the
temperature ratio weakly.
In the opposite extreme case, i.e. IUi|>>vi, the formula
z

-1
lFl(a,l;z)=e z% /T(a) can be used. Then we can solve the

dispersion relation

- ~3/4
wr:alkvi(r;i/x){1+2 1/"(Te/Ti) / (me/mi)l/“(x/rii)l/z}
(45)

Here a, is a numerical factor which is about 0.66. The real
part again only weakly depends on the temperature ratio. On
the other hand the growth rate in this case strongly depends on

the temperature ratio. When Te/Ti>l, the source term due to

drifting electrons are dominant and the growth rate is
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approximately

o m iy AT N I R O U
VETRA(T/Ty) 7 mg/my) (i /0 (A 5 7= = )
1 e rLl 1

. _
X {a2(rLi/A)(kvi/wr)+a3} ’ (46)

where numerical factors ayr a, are about 6.3 and 3.9,
respectively.

In the intermediate cases, where the drift velocity
is comparable with the thermal velocity, the wave source due to
electrons and the sink due to ions are both important, so
that the whole system of egs.(39) and (41) should be numerically
analyzed.

The numerical results are shown by solid lines in Fig.6
for some temperature ratios Te/Ti' In the same figure we show
the analytical approximations for the extreme cases by‘broken
lines. The analytical results depend more weakly on the
thickness than the numerical ones, and this seems due to the
neglect of the ion contribution in the analytical treatment.
The critical value of A is decreased as the temperature ratio
is increased. Fig.7 shows how the temperature ratio Te/Ti
affects the growth rate. 1In this figure the numerical results
are also shown by solid lines in comparison with the values of
approximated expressions which are shown by broken lines.

The growth rate has its maximum at Te/Ti~2—3. Note that the
mode can grow even if Te=Ti' When the sheet thickness becomes
thin, Y becomes positive in a wide range of the ratio Te/Ti'

Physically may be described this situation as follows.

Based on the electromagnetic nature of the wave, the phase
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velocity of the mode seen by the ions, (wr/k)—Ui, becomes
large as the thickness A is reduced. Then the number of the
coupled ions becomes small. Moreover because the mode is
propagating in the direction of the electron-drift Ue’ the
coupled ions are separated into two families, meandering and
noncrossing ions. As is described before, these noncrossing
particles are hardly influenced by the perturbed electric
field. By the efféct of the reduced thickness a large amount
of the coupled ions are in this family. Then absorber of the
perturbed energy is greatly reduced when the sheet becomes thin

enough. As to electrons, however, the thickness X is still
*

larger than Tie

so that the coupled-electron contribution is
not so influenced. Consequently the instability occurs in a
thin sheet. 1In the case of the large temperature ratio the
contribution of the drifting electrons as the wave source is
reduced. Because the phase velocity is slower than the
electron thermal velocity, the gradient of the drift-Maxwellian
distribution function seen by the wave becomes less steep when
the temperature ratio becomes large. Then the drifting
electrons cannot give much energy to the wave. On the other
hand when the temperature ratio becomes small, the drift
velocity Ue seen by the wave becomes small and the ion
contribution becomes large. Then the growth rate is greatly

reduced. As a result the wave has a suitable range of Te/Ti

for the positive growth rate.



7. Concluding remarks

It must be emphasized that the plasma contained in the
neutral sheet region behaves in an entirely different way from
the homogeneous or slightly inhomogeneous plasmas. One of the
main features comes from the variety of the particle orbits;
particles exhibit different orbits corresponding to different ¢
and p. Another point of difference is due to the structured
configuration of the magnetic field which is not translationally
invariant along the x-direction, so that the velocity space is
always defined in connection with the real space. Starting
from the neutral sheet region, only some part of energetic
particles can feel outside of the sheet structure while the
rest, with lower energies, of the particles will always remain
in the neighbourhood of the null plane to make bouncing inside
the sheet region. These low energy particles can easily be
accelerated by the electric perturbation excited perpendicularly
to the magnetic lines of force. The electromagnetic perturbation
around the neutral sheet is found to form an eigenmode defined
by the structrue, and is mainly contributed from the meandering
particles.

Although the reconnection process is a macroscopic
phenomenon, which is mainly caused by the piling up of the
magnetic lines of force around the null plane, microinstability
is essential to make the layer dissipative. When the half-
thickness of the sheet is reduced down to 0.9 r;i or less, the
present mode becomes unstable. This implies that the instability

considered here may play an important role to trigger the whole
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macroscopic reconnection process of the thin neutral sheet,
where the electron temperature and the ion temperature are
comparable. If we take the typical field strength at the
geomagnetic tail, B~20 gamma [3], and take A/r;i~2/3 as for the
half-thickness of the sheet, the ion cycltron frequency

w;i~2 rad/sec and eq. (45) gives wrwkvi. When we assume kA~0.2
and Y/wr~2XlO_3, tbe typical time scale of this instability is

about 800 sec. (14 min.). This value coincides with the

observed flare time scale [3].
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Figure Captions

Fig.1l Geometry of a plane neutral sheet. The current J0
flows in the negative y direction. The yz- plane at x=0

is the magnetic null plane.

Fig.2 The ¢ -p phase space. All the particles exist in the
region e€>-p. The particles which start at the position
of x are limited in the rigion ezlp—Aj(x)l. Meandering
particles are in region I (shaded) and non-crossing
particles in region II (hatched). Broken lines show the
contours of the drift velocity W The trajectory of

no drift wD=0 is shown by a dot-dash line.

Fig.3 Particle orbits in the vicinity of the null plane.
A noncrossing orbit is shown in the left. The middle one
is a meandering orbit drifting in the same direction as
the noncrossing orbit. The right is another meandering

orbit which drifts in the opposite direction.

Fig.4. The €-p phase space, same as Figure 2. Broken lines
show contours of normalized distribution function F;
=exp{—(ez-25jUjp)/2v§} for lUj|=vj. The region below the
two-dot-dash line corresponds to |x|<A.

Fig.5 Approximation of the equilibrium magnetic field used
in the estimate of the orbit-integral. The equilibrium
state is separated into two regions: the inner region,
|x|<A, where the strength of the field varies linearly

and the outer region, A<|xl, where the field is constant.
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Fig.6 Growth rate normalized by w_ versus the half-
*

Li’
show the numerical results, and broken lines show the

thickness of the sheet X normalized by r Solid lines

analytical approximations. Temperature ratio Te/Ti is

indicated by an attached figure to each curve. The growth

rate becomes positive as the layer becomes thin enough.

Fig.7 Growth rate normalized by w. versus termperature
ratio Te/Ti' Solid lines show the numerical results and
broken lines show the analytical approximations. Sheet
thickness is indicated to each curve. The difference
between numerical and analytical results comes from the

neglect of ion contribution.
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