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Abstract

The current-driven universal drift instability in a self-
consistent magnetic shear field is analyzed. We develop a novel
and simple method to determine the eigen value of the mode,
recovering previous results. It is found that even in a fairly
strong shear residual modes remain unstable in the presence of
the parallel current. We obtain the confinement scaling law

T « na’Rq//T for high field tokamaks.
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Recehtly the current-driven drift instability has been
remarked in the view point of the anomalous plasma transport in
tokamaks. The tokamak plasma is carrying its own current which
generates the rotational transform and the magnetic shear.
Therefore the critical shear for the stability of the drift wave
should be consistently obtained, considering the competition
between the stabilizing and destabilyzing effects.

In this letter we develop a novel and simple method to
analyze drift instabilities in the sheared magnetic field and
obtain the critical shear for the current-driven universal mode.
The transport scaling law due to this mode is given 1 « na?Rq/V/T
( n: the plasma density, a: the radius of the plasma column, R:
the major radius, q: the safety factor and T: the temperature ).

In the magnetic sheared system, the drift wave resonates
with electrons close to the rational surface and propagates
across the magnetic surfaces until the wave damps off by the ion
Landau damping. Until Rosenbluth and Cattol)improved the cal-

2)

culation of Pearlstein and Berk“’on the universal mode, WKB method
has been employed even though the condition of the WKB method is
violated. We study the electrostatic current-driven universal
mode in both self-induced and the external magnetic shear, util-
izing the complete orthonormal set to obtain the eigen value of
this mode. Recovering the previous elaborate works in the two

limiting cases, that is J ( the longitudinal current ) = 01)

)

w = w, ( the drift frequency )3, our results clarify the transi-

or

tion from the universal mode to the current driven mode.
The geometry we use is a slab and the x-axis is taken in
the direction of the density gradient, Vn = -«n%&, the magnetic

field is given as B = (o, X/Ls’ 1)B ( x

I

0 corresponds to the



rational surface and Ls
current is carried by electrons,

neu.

1)

distributions are used.

is the shear length ).

The longitudinal

so that we use the relation J =

As equilibrium distribution functions the shifted Maxellian

In the following, subscripts i and e

denote ion and electron respectively, m and v are the mass and

the thermal speed, T = Te/Ti'

bation of the form ¢ (x)exp[i(ky-wt)].

sionless type is well knownl)

We consider a potential pertur-

The equation of the dimen-
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where p is the Larmour radius and I0 is the 0th order modified

Bessel function.

Using the complete rothonormal set { 9,

} with the boundary

condition for the waves to be out-going, we express the poten-

tial perturbation as ¢(g) = ?an¢n(C),
YA
o) = (B Ly o oine2 (2
/nt
where Hn is the Hermite function and ¢n satisfies
[ 5 ? N UZCZ + 2 1 ¢ =0 A = ip(2n+l) (3)
32 n ! n i



Multiplying ¢m from the left side of Eq.(l) and integrating it

over ;, we rewite Eq.(1l) into the series of equations of 1lst

degree.
gvmnan = A,;l— A ) oa (4)
where
v = [oe (@)n(z)e, (p)dr (5)
=<m|n|n >, <m|lln >z §__ .

When we take only a in Eq. (4), that is m=n=0, and demand Im X =
0, we obtain the critical shear given in ref.(l). For the cur-
rent-driven drift mode, as remarked in ref.(3), n(z) has essen-
tially an asymmetrizing effect on ¢ with respect to ¢. In order
to include this effect we take ( a

a, ) set and solve Eq. (4)

o’ "1
in 2 x 2 truncated matrix form. Since the higher m mode are
strongly damped ( Ama 2m + 1 ), the coupling between higher m
mode is negligible. As the smallness parameter we take € = /ﬁte
and the truncation of the matrix Eq.(4) is consistent with this
ordering. We retain terms in an up to the 2nd order of u/ve,

which 1s also the expansion parameter.

After some calculations we obtain

— — 2 2 2 6
A= [(xo-v00+xl-vll)¢/(xo v00 Al+vll) +4,v10 1/ (6)
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—-g2 -— u? L
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e
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The condition Im X = 0 in Eq.(6) gives the equation for the

critical shear stabilization,

W iuz + /feln(a)[52u2(w*_w) -

192u° - lGU{mT+m* v’ WTHW,

a2 g .
{w(zizz) - 26u2(3w—w*)}%—2 ] =0 (>0 for stability ), (8)
et 4

where we expand Bessel functions Ko and Kl and retain the lowest
order of €. Linearizing A with respect to Y/w,, ( y: the linear
growth rate ), we have Y/w, = (wT+w,)2Im\/(w+l)w?.

In the slab geometry, the shear length and the current
density has the relation through.Maxwell's equation Vx B = 4n3/c,
that is u/ve = - /ﬁ;7ﬁ;pi/BiLs, and the shear gtabilization eff-
ect is reduced or annihilated according to the value of Bi3).

In Fig. (1) we show the critical shear v.s. /ﬁ;7ﬁzpin/si. The
hatched portion is unstable and the dashed vertical line shows
the criterion in ref.(3) in which the finite Larmour radius eff-
ect and the elne term are neglected. The mass ratio mi/me is
taken 1836. 1In the current carrying cylindrical plasma, the
shear parameter is determined not by the local current density
but by the shape of the current profile. 1In this situation the
relation u/ve = - /E;7ﬁzpi/BiLs does not hold. 1In Fig.(2) and

Fig.(3), the critical shear and the growth rate ( for fixed



shear parameter ) are shown v.s. b for various values of u/ve.
We see that even in the fairly strong shear modes with wide
range of b become unstable in the presence of the current. The
similar result to Fig. (2) has been obtained in ref. (4) although
they have used the WKB method.

From these results we discuss about the transport scaling
law due to the current-driven universal mode. The anomalous

5)

diffusion coefficient is expressed as®’ D = ¥ (ﬁk/n)zy/Kz. We

k
evaluate (Hk/n)2 = k?/ki = Kz/(k2+k;)?) The fact that the
growing region along x of this mode is wider than the wave local-

ization width indicates k; = uBi/Z. For simplicity, we take

Yy = w(wT+w*)U/2Ve(l+T)2w* and T = 1, and we see
T
D =] k“e_ A u (9)
2 2y €B N2 V
k (k +kx ) 2(2-1) e

Replacing the summation by an integral, noting that k = m/r,
where m is the poloidal mode number and r is the radius from the

center of the plasma column, we get

rkT
e u 0 db A
D= ——— — f /] 7 — 2 (10)
4eB Ve °(kx Py +b) (2-1)
2 2 _ - - T
k ot = (2 A)/IO/A(IO I, )/ZKLS .

The particle confinement time Tp may be given as Tp = 0.5 x 10"5

na’Rq//T F, where F is the slowly varying function of the shear
parameter and is order of unity. a, R, n, T and B are measured
in cm, m, 1013/cc, keV and T respectively. Assuming Tp = Tgr

and from the relations nJ? = nT/TE and n« ZeffT-3/2’



T ~ 3 x 10° nazRq[ggﬁz]I/G (11)

p,E

the confinement time Tp E is approximately proportional to the
’

total particle number.

To derive this scaling law we assume that the intervals
between the rational surfaces of the neighbouring modes are
wider than each mode localization width, otherwise, the coupl-
ings with neighbouring modes should not be neglected. Our
analysis indicates that the plasma may suffer from this mode
in high field tokamaks unless the plasma density is increased,
because u/ve is proportional to B/n for the fixed q(r). On
the other hand in high density tokamak where ve/w*max> 1 holds,
( Ve is the electron collision frequency, and Wemax is the
maximum drift frequency ), the collisional drift wave dominates
and we may have the other transport scaling law6).
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Figure Captions

Fig.1

Fig.2

Fig.3

The critical shear v.s. /me7mipi|</8i in the slab geo-
metry is shown for various values of b. The value of

the parameter b is indicated on each 1line.

The critical shear v.s. b for various value of (u/ve)2

( indicated on each line ) is shown. mi/me = 1836.

The growth rate for the fixed shear parameter v.s. b
is shown for various values of (u/ve)2 ( indicated on

each line ). mi/me = 1836.
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