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Abstract

Using the normal mode expansion method, the collisional
drift waves of the slab plasma in the sheared magnetic field
are investigated. 1In the strong shear parameter regime ,
1< KLy << mi/me ( k : density gradient, Ls : shear length
and mi/me : mass ratio ), the growth rate is found to be
proportional to /V/w,. The diffusion coefficient is also

estimated and the density limitation of the high density

tokamak is shown.



Drift instabilities have been subject to exaustive
investigations concerning about the anomalous loss of
magnetically confined plasmas. Many driving mechanisms of the
drift instabilities have been found in various parameter re-

1)

gimes™’'. Recently the plasma confinement scaling law, that is

the confinement time 1. is proportional to the plasma density

E
n, has been adopted for tokamak plasmas, and efforts have been
paid to increase the plasma densityz). However, with the in-

crement of the plasma density, the growth rate of the dissipa-
tive drift mode may increase as to restrict the plasma con-
finement. The stabilization is mainly due to the magnetic
shear.

In this letter we investigate the collisional drift wave
taking the shear effect correctly into consideration, and find
that the growth rate y= /v instead of y= v ( v: electron colli-
sion frequency ). We may say that even in fairly strong mag-
netic shear the collisional mode gives the density limitation

to the high density tokamak plasma.

We use a slab model with sheared magnetic field in the
following analysis. The x-axis is taken in the direction of
the density gradient as Vn = - Kn;. The magnetic field is
given by B= (o0, X/Ls’ 1 )B. We consider an electrostatic
fluctuation B = -V of the form ¢(§,t) = ¢ (x)expli(ky-wt)]
where we put kz = 0 without a lack of generality. Other quan-

tiites are also perturbed as n. = n,.+ n. = n,.
J 03 3 03

The subscripts e and i stand for electrons and ions respec-

+ Hjexp[i(ky—wt)].

tively.



We take the electronscollision into account using the

linearized Vlasov equation with BGK collision model3), that is,
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For ions we use the linearized Vlasov equation. We assume that
the equilibrium state is local Maxwellian. The equilibrium
distribution function is given as foj(z,z,t) = Lﬁ?vj)'3exp[
-K(x+vy/Qj) —v2/2vj2] ( Qj: the cyclotron frequency, vy the
thermal velocity /T;7ﬁ; ). In the slab geometry, the magnetic
shear is due to the plasma current Jz. Here we neglect the

effect of the force free current4) for simplicity. According

to the well established method, the density fluctuations are

given as
ié - e¢[1+(—~————i)Z( y/{1 ___EE__z(g)}] = Eg(l+x ) (2)
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where Z(£) is the plasma dispersion function 7% i—& dt, & =

™

(w+iV)//7|kﬂVe' k,= kx/LS, A(b) = Io(b)e—b, b kzp;, and oh

is the ion Larmour radius. The Poisson's equation Hé = Hi (
for the Debye length << k™! ) gives the differential equation
as the dispersion relation. Since the instability source of

the mode is localized in the narrow region near x = 0, we ex-

pand Z(w//2|k|v,) with respect to kxv./L_w and obtain
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The ion Landau damping does not appear explicitly in this equa-
tion, as in the case of the universal mode4’5), but determines
the boundary condition for the waves to be out-going as x> .
Since dQ/dz/Q > VQ ( Q = |A-u%¢?+n| ) near z= 0, the WKB
method is inapplicable to this problem. As in the case of the

4)

current driven mode ’, we take the complete orthonormal set of

1/ _— -1 —
functions { ¢n| ¢n(€) (ip/2m) l*Hn(/iuc)e lucz/2//11! }

Expressing ¢ = Zan¢n(c), we obtain

A - A, +<0|nj0>, <0|n|1>, - - -

0
det |[<1|n|0>, A - At <i|n|1>, - - -

i
(e]

(5)

where <i|F|j> = f¢iF¢jd;, <i|1]3> = Gij and Ay = i(2n+1)y.
Since the large n mode ¢n is strongly stabilized ( Anm 2n+l1 ),
the contributions of the couplings between higher n modes are

unimportant. Retaining ( a a, ), we truncate this infinite

OI
matrix into 2 x 2. Because of the parity of ¢n and n, <1l|n|o0>

= <0|n|1> = 0 holds having

A=A, - <0|n|0> (6)

0

+ Sw+ iy, w, is the

for the least stable mode. Let be w = 0

Yo



solution of » = 0, i.e., Wy = wuh/(147-10). Linearizing )

with respect to Y/w,, we obtain from Eqgq. (6)

(L)oT'HL) )

Y/ Wy = *;;Tymf— [ Im<0|njo> - n ] . (7)
Now we evaluate the integral <0|n|0>. We take two expan-

sion parameters w/v and e = /Ege ( Lo = st/kveﬁi ) for w<<v,

then n is approximately given by
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Executing the integration, to the lowest order of w/v and £ we

have
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where F(e/V/w) is the numerical coefficient of order of unity
and goes to zero as g2?v/g+> o. From Eq. (9) we see that the
growth rate smoothly connects to those of hydrodynamic ( y= v-1)
and universal modes both in high and low collisional limits.

In the intermediate ( collisional ) regime, 1 < v/w < 1/e2, the

growth rate is proportional to vV not to v. Equations (7) and

(9) gives the critical shear parameter for the stability
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For the unstable mode ( Im <0|n|0> > u ), the growth rate is
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both are in the collisional regime. In Fig.l, the stability
criterion is shown on a V/w*max— b plane for various values of
l/KLs. The mass ratio mi/me is taken 1836. As the shear
increases the unstable region moves to higher v/w and b. 1In
figures v and y are normalized by Wy nax (= KT/eBpi ). In Fig.
2 and Fig.3'the contours of the growth rate are shown on b -
V/Wapax 204 V/wepax - 1/kLg planes.

Finally we briefly discuss the cross field diffusion due to
the collisional drift mode. The diffusion coefficient D is
given by z|3k/n|2yk/zz7). We assume the quasilinear saturation

7)

level |n,/n|?=x «?/Kj = 2/ (k?+k2) ( k2 = u/p} ). Because the

growth rate is an increasing function of b ( b <1 ), and for
b > 1 modes the ion collisional damping may dominateG), the
main contribution comes from the short wave length mode with

b~ 1l. D is given as

m

D = B2 //h* v € kL ( collisional regime ) (12)

i *max W max ani s -

The diffusion coefficient depends on yv for the fixed KL« The
analyses with a local approximation have shown y« v, that is
D« v. The collisional drift wave has been considered as the

cause of the anomalous transport, the pseudo-classical‘law7).



However, in the previous analyses, the parallel wave number k,
is ambiguously evaluated.

In the concept of the high density tokamak, the parallel
electron velocity ( u = J/ne ) is inversely proportional to
the density for the fixed q value, and is low enough for the
current-driven mode to be stabilized, i.e., u/ve < 1/KLS4).
Assuming that the value of KLS in Eq.(12) is evaluated by Ve/u,

the diffusion coefficient D is proportional to the plasma

density ( i.e., 1, n~!). We may say that the collisional

E
drift mode gives the density limit even in the sheared system.
Since the localization width of the wave (< st/vik ) is
small compared with the density gradient length, above results
are directly applicable to cylindrical plasmas. In addition,
in high density tokamak plasmas, where VR/a > Wy ( R/a; the
aspect ratio, W3 the bounce frequency of the trapped electronsl))
holds, the effect of trapped particles are negligible. The
typical features of collisional drift modes are essentially the
same as that of the slab model discussed here. In applying the
results to cylindrical and toroidal cases ( for instance the
tokamak simulation ) the values ( «, Ls’ ** ) are to be
evaluated by the local values.
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Figure Captions

Fig.1 The stability criterion on a \)/w*max - b plane. The
parameter l/KLS is indicated on each line. The
upper part of the line is the unstable region. As
l/KLS increases the unstable region degenerates to

higher b region.

Fig.2 The contour of y/w The shear parameter l/KLS

*max”®
is taken as 0.034 ( left ) and 0.109 ( right ). The

growth rate forms a " ridge " near v/, 1/€2.

Fig.3 The growth rate contour on v/w - l/|<Ls plane.

*max
Both axis are in logalithmic scale. The finite
Larmour radius effect, b = 0.1 ( left ) and b = 0.75

( right ).
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