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Abstract

A scaling law for high density and high current tokamaks
is presented on the basis of the non-local theory of drift
instability of current-carrying plasma with the assumption of
quasi-linear saturation level. It is shown that the energy
confinement time scales as T © ng/YT (n and T are the averaged

density and temperature) due to the pure current-driven mode in

the relatively lower density region and 1, « B/v/n (B is the

E
toroidal magnetic field) due to the usual collisional drift
instability in the higher density region. The effects of the
trapped particles are assumed to be negligible.

A test-experiment of the scaling law on the J.I.P.P. T-II

device where both the tokamak operation and the operation with

the superposition of helical fields are possible, is proposed.



1. Introduction

The purpose of this paper is to present a scaling law for
tokamaks based upon the nonlocal theory of drift instability of
current-carrying plasma with temperature inhomogeneities}) The
scaling law is derived from the anomalous transport coefficients
of high density plasmas. A second purpose of the paper is to
propose a test-experiment of the scaling law on the J.I.P.P. T~

2)

II device where both the tokamak operation and the operation
with the superposition of helical fields are possible.

The importance of the current-driven drift instability on
anomalous transport in toroidal plasmas has been discussed by
several authors§—6) The previous works are either limited to the
local theory, or not inclusive for destabilizing or stabilizing
effects of many factors such as rotational transform, magnetic
shear, and temperature and density gradients. Coppi et al3)
have shown that the current-driven drift mode contributes
appreciably to the heat transport in the Alcator experiment.

Their treatment is, however, the local theory where the
parallel wave length is arbitrarily chosen and the effect of
the shear is not correctly incorporated, although both the
plasma current and the presence of the trapped electrons are
considered.

In the present analysis we consider the non-local modes of
current-driven and collisional drift instabilities in a
sheafed magnetic field, including the electron and ion temperature

gradients. The electro-static approximation is made because

electromagnetic perturbations do not give appreciable contribution



7)

to plasma transport. The effect of the trapped particles is
neglected, since we are concerned with the scaling law for high
density plasmas.

For the estimation of the diffusion coefficient, we use

the familiar relation
D = z‘| ——|2 — ’ (1)

with an appropriate assumption for Iﬁk/nolz, where Kk is the
density gradient and ﬁk is the perturbed density with the wave
number k (n0=background density). The growth rate Yy is
estimated by the non-local theory. For heat conductivity, we
use a similar relation. The summation over the wave number k
will be'carried out comparing the localization width of
unstable mode in the direction of the density gradient with the
distance between adjacent rational surfaces. The scaling law
is derived from these transport coefficients, which is
applicable to high density tokamaks. Firstly, it is expressed
in terms of the plasma parameters averaged over the plasma
cross section. Secondly, the effects of the radial profiles of
the plasma parameters on the scaling law are discussed.
Numerical examples are given for the J.I.P.P. T-II device.
Implicétion of the scaling law to the experimental conditions
are discussed. It is shown, for example, that the gross
confinement time becomes longer as the helical magnetic field
increases for the fixed value of the total transform angle
which is the sum of the contributions from the helical field

and the plasma current. An experiment to confirm such a



tendency is proposed.

In Sec.2, the anomalous transport coefficients are
presented. In Sec.3, the scaling law is expressed in terms of
the averaged quantities of the plasma parameters and its
numerical value is estimated for the J.I.P.P, T-II device. 1In
Sec.4, the effects of radial profiles of the plasma
parameters are examined. In Sec.5, the experimental procedures
in J.I.P.P. T-II ére discussed. 1In Sec.6, the conclusions are

presented.

2. Anomalous Transport Coefficients

We here discuss some characteristics of the current-driven
or collisional drift instability. The geometry we firstly use
is a slab with a sheared magnetic field, where the x-axis is
taken in the direction of the density gradient (Fig.l). The
shear parameter is taken to be l/KLS. The normal mode in the
presence of both the plasma current and the electron collisions
is obtained in the reference [13]. For the anomalous diffusion
coefficient D given in eq. (1), we assume the quasi-linear

saturation level
n
k 2 2

!__!2 = K = K , (2)
0 k,2 k2 + k2

where we simply write the wave number in the y direction as k, and
kx2 is estimated to be yu/p;” (see the Appendix). We now use the
following notations; Ve is the collision frquency for the

electrons, oy the ion Larmor radius, pi2=Ti/miQ;,



n=(1/1€ L)Y=ET/R(L + 1 = Th), T = T/T,, A = ;IO(b)e"b, b = k*p,?%,
5i2 = —A'piz. By adopting the proper eigenmode, we get rid of
the ambiguities in the evaluation of k, and kx’ which remain

to be arbitrary constants in the local approximation. Although
the relation (2) was conjectured in the earlier works, it is

not yet demonstrated reliably. We may add the following

remarks. The recent workss-lo)

on nonlinear transport have
shown that the quasi-linear saturation, or the saturation due
to the density flattening is important and suggested the above
relation. Moreover, it means the condition that the cross-
field velocity due to the perturbed electric field is equal to
the original diamagnetic velocity in magnitude.

These results can directly be used for a plasma column.
In this case, k is replaced by m/r where m is an integer, and
r is the radius of the concerned rational surface. 1In the
summation, k=m/r takes not all the values (m=1,2,3*** ), In the
neighbourhood of one rational surface at r=r, there exist only
the (m, n) modes which satisfy |m/n-q|<q'6‘where § is the wave
localization length. We simply approximate the summation Zk by
the integral (r/pi)Jd(kpi), although this is an overeétimation.
Hence, we get

D= f;i Y*max J ézﬁwﬁz db (3)

where w*=kKTe/eB and the maximum drift frequency is defined by
w =KTe/eBpi. For the growth rate y, we substitute the

*max

following value of the normal eigenmode which is derived in the

13)

Appendix » assuming that the contribution of trapped



particle is unimportant. Y is expressed as

2

Y - _(‘“_HB_*_)? [y + /(d0+zy>2+4a12(3—)2—4u] . (4)
* 2(1+T1)w, e
with
v
_ W= W e € V2
do-wfr+w (a__—-—-+s:2,n——€—) [;
* vyam
w

d = ’

1 WTHW

(5)
w = Aw,/(1 + T - 1ThA) ,

. 1 /2
e =& (oo e /

where u is the electron velocity which supports the plasma
1/2

current and ve=(Te/me) / . It should be noted that d, is

contributed by the electron dissipation and ion gyroradius

effect, d, is due to the current-driven mode, M indicates the

1

rate of the convective damping due to the magnetic shear, and

€ is the expansion parameter defined by € = /I w Ls/k 5i Ve

(which is of the order of vk Ls me/mi). We have retained only
the terms to the lowest order in €. As expected, the above
expression does not include k,. Substituting the current
experimental data of tokamaks, we find that the magnitude of
the magnetic shear is insufficient for the suppression of the
drift wave instabilities. Following the usual way, x is
approximately evaluated as 2D.

When the current density is high, i.e., d >> do, we

o |e

1

obtain the diffusion coefficient



=]

u
— F . (6)
ve CD

Dep

N[
|
w|mo

The numerical coefficient FCD is a slowly varying function of
KLS. The typical value of FCD is tabulated in Table 1. On
the other hand, when the density becomes high enough, i.e.,

do << dl VE’ we obtain

gl<

/\)
— _(_LU*T + (U) (wL— (L\) ( _S .....E_ + ef&n _/_2__ ) . (7)
w m €

* (1 + Tw,?
The diffusion coefficient due to the collisional drift
instaibility is thus found to be

KrT m V
~ e e e
DCM eB //Zﬂm. w KLs FCM : (8)

i T*max

The typical value of the numerical coefficient F is also

CM
shown in Table 1. Note that this result differs from the

11)

previous ones. Equations (6) and (8) show the diffusion
coefficient in the two limits.

When the plasma temperature is high and the density is low
enough, the above results are to be compared with the

transport coefficientsdue to the dissipative trapped electron

mode
D__ = (2)3/2_2 EE (ES)Z
TE R vV T eB !
e "n
(9)
Yoy = (227208 (Cey
TE R 2 eB '
v r
e n
_1 ’ . . .
where N = V&nT_/V&n n, and r, =[van n,|. The dissipative

trapped electron mode becomes dominant for the condition that



1/2
Ve R/r <% Wy = 2(x/R) / ve/qR where Wy is the bounce frequency
of the trapped electrons. In the intermediate regime of Ve
R/r > Wy s the current-driven mode and the dissipatve trapped

3)

electron mode coexist;’ and their combined effect will

govern the plasma confinement.

3. Scaling Law and Its Application to J.I.P.P. T-II Device

Scaling law for high density tokamaks is deduced from the
results obtained in the preceding section as follows. The

energy confinement time T is evaluated by aZ/X=a2/2D.

E
Calculating the numerical constants included in egs.(6) and
(8), we get the diffusion coefficients both in the current-

driven (CD) regime and the collisional mode (CM) regime as

=
R

D 15.2 /T/nqR (m%/sec)

cm 0.4 /KLsﬁé /B (m2/sec) ,

where T (averaged temperature) n (averaged density), R major

(10)

R

D

radius, a minor radius, B are measured in units of keV,
lOla/cc, m, cm, and 10 kG, respectively. In the above, we have
evaluated the averaged value of kr as 1/4. Then the energy

confinement time is given by

g = 3 x% lO—BHqRaZA/% (msec) , for CD regime,
(11)
—_
T 0.12 azBé/naK L (msec), for CM regime.



We apply this formula to the plasma confinement in the
J.I.P.P. T-II device. The machine parameters and the typical
Plasma parameters are listed in Table 2. It should be noted
that the magnetic shear is not sufficient to stabilize the
drift wave instabilities. The possible modes to limit the
plasma confinement are the collisional mode (CM), current-
driven mode (CD), and the dissipative trapped electron mode
(TE). When the plasma density is low, CD and TE modes become
unstable and the resultant diffusion is inversely proportional
to n. The scaling due to the CD mode and that due to the TE
mode show a similar n dependence, however, their temperature
dependences are far different. As will be shown in the next
section, the TE mode does not play an important role in the
experimental regime in Table 2. We set our scope on the
current-driven mode and the collisional mode in the following.

Using eqgs.(10) and (11), we have the diffusion coeffiecint
for both the current driven regime and the collisional regime

as

14

Dep = 3.5/ n =« 16.7//%7 nq (m? /sec),

2

Doy * o.63ﬁ/13 (m? /sec),

where n, T, B are measured in units of lOls/cc, keV and 10 kG

respectively. The energy confinement time is

T. % 0.7 ngq 4/% (msec) for CD regime |,

~
1

oo
IUJ

E (msec) for CM regime .

=3



This result is illustrated in Fig.2. The transition from the
current-driven regime to the collisional regime occurs around

n = HC ~ 4 x 1013/cc, where the maximum confinement time is expected
approximately 10 msec. The electron temperature scales for the
total plasma current I and the saféty factor on the surface g

as

w]|n
wj

H3|
K]
H

in CD mode regime (n < HE) '

3 6 2
T «n 5 I5 g5 in CM mode regime (n > nc) .

Note also that the density at the transition point, n,, scales

as

« 13/ 7'/°

c

In real plasmas the plasma parameters have radial
profiles, and the transport coeffiqient has also radial
dependence. One will see such a situation that in the central
core of the plasma column the current-driven mode dominates
and, at the same time, in the outer edge of the plasma the
collisional mode dominates. This may make the transition
between CD mode and CM mode somewhat vague. The analysis which
takes the parameter distribution into consideration will be

given in the next section.

- 10 -



Table 1

KL 10
s
T 1 3
FCD 1.72 1.82
FCM 0.34 0.42
Table 2

Bt 30 kG

a 17 cm

R 91 cm

I 100 kA

p
n (1-5) x 10'3%/¢cc
Teo 1l kev
Ti/T 0.4-0.8
/v, (1.7-8.4) x 10~°2
Zeff 2

- 11 -



4. Consideration of Radial Profiles

To analyze the scaling law more precisely, we consider the
case where n, Te’ J are assumed to be the gaussian distributions
as shown in Table 3. The radial dependences of the other
quantities are also shown in Table 3. The numerical values are
referred to the typical experimental conditions of J.I.P.P. T-II.
As shown in the Appendix, the current-driven (CD) mode becomes
unstable even in the presense of the fairly steep electron
temperature gradient and the ion temperature gradient promotes
it, so that the CD mode may not be stabilized unless the shear
is strong enough. Keeping these facts in mind , we show the
radial profiles of the ratio of the electron drifting velocity
to its thermal speed, u/ve(instability source indicated by
solid lines) and the shear strength (l/KLs, indicated by the
dashed line) for the case of ne=2 and 4/3 (for the fixed total
plasma current) in Fig.3, from which we find that the shear is
insufficient to stabilize the CD mode near the center of the
plasma column even when ne=2.

We estimate the radial distribution of the transport
coefficient by using egs.(3) and (4). The result is shown in
Fig.4 for the various values of the plasma density. We show
the density dependence of the diffusion coefficient, D(n), for
the various points in the radial direction in Fig.5. One sees
that the density dependence of the diffusion coefficient is
very similar to that obtained in the preceding section. Hence
the coefficients expressed in the averaged quantities are of

good approximation for the arguments of the overall plasma

- 12 -



confinement time.

For the plasma parameters of J.I.P.P. T-II, one may
expect that the plasma may suffer from the trapped particle
instabilities. However, the dissipative trapped electron mode
(TE) does not appear unless the operating plasma has lower
density or higher temperature (n < 10'3%/cc, or Te> 1 keV). We
confirm this by calculating the bounce frequency and the
effective colliSion frequency of the trapped electrons as
functions of the radius. 1In Fig}6, we show schematically the
instability criteria in the plasma column as a function of the
averaged plasma density. The dotted lines show the condition
of Veff/@b=1 which means that the deeply trapped particles
become barely free from collisions.. The solid lines show the
condition Veff/mb=0.5. Only in the shaded portions divided by
the solid line, the TE mode may appear, since the TE mode is
induced by the trapped electrons. Therefore, in high density
regime, it is not necessary to consider the contribution of
trapped electrons to the transport coefficients.

We also show in Fig.6 the lines which satisfy the
condition u/ve = l/KLs for ne = 2, 4/3(chained lines). One sees
that in the inner part of the plasma column divided by these lines
for each Nor the CD mode cannot be stabilized by the shear.

The above results are based upon the gaussian distributions.
Almost the same results apart from the numerical factors of the
order of unity are obtained for the other configuration such
that n=n0(l - x2), T

3/2
e = Teo(l—xz) / . It is therefore concluded

that the transpart coefficients taking account of the radial

- 13 -



profiles of the plasma parameters coincide well with those

obtained with the averaged plasma parameters.

-

Table 3
(parameters) (radial distributions, x=r/a)
n n,exp (- %xz), n=0.52 ng
K 3x/a
Te Teo exp (- % nexz)

J(current density)

| 9 2
1.05(J0/q0)exp(— vy nex )

qy7q(r=0) 2.12/n_(1-exp (- 30
9
q dy 7 nexz/(l—exp(— % nexz))
q(r=a) 4.77
3.2
u/ve (0.064/q0)exp[- 5X (ne—l)]
v 2.16°10°(2_../2)expl (2 n_- 3)x?]
e . eff PLIZ Te™ 2
. -1 9 _3,.,2
veff 5.78°10 Zeff X exp[(z e 2)x ]
: 1/2
Wy 1.18+107x / exp(- % nexz)[l—exp(— % nexz)]
2 -1
-(9nex /4)
KT
el «10° -3 2
m*max_eB pi 8.82*10°x exp( 2 nex )

- 14 -



5. A Test Experiment in J.I.P.P. T-II Device with

Helical Fields

Based upon the scaling law both in the cureent-driven (CD)
regime and the collisional drift (CM) regime, we would like to
propose a test experiment on the shear effect, controlling the
rotational transform and the shear by use of the external
helical windings. We first consider the case that the
toroidal field (Bt) and the total rotational transform 1 =
10 + 1. are fixed (the procedure 1). In this case, the

H

confinement time Tc will change as

- _ T 1 )7/6

c 0 (T’_ 1H for CD mode,

T =T for CM mode,

where TO stands for the confinement time obtained by
tokamak operation. The confinement time To increases appreciably
(about 1,6 TO) when one third of the total value of the

rotational transform is made by the external windings (1H =

1/3). The temperature changes under this condition as,
T -1
T =T, (—1-—--11)1/3 (CD Mode)
T -1
T =T, (-—t—ﬂ)"/5 (CM Mode)

where T0 is the value obtained in tokamak operation. The
resultant decrease of the temperature is caused by the
reduction of the ohmic heating.

For the operation where the plasma current is kept

- 15 -



constant and thus Te changes little (the procedure 2),
the rotational transform angle changes for both the modes from

1T to

where IT is the value in tokamak operation. In this case, the
confinement time remains unaltered provided that the shear

parameter and BT are unchanged.
T =T (for CD and CM regime)

These two procedures illustrate two typical checks to find
the way to make use of the freedom introduced by the helical
windings. In the procedure 1, 1 is expected to be unaltered.
This means that the MHD properties of the gross equilibrium are
not so much affected while the diffusion coefficient is reduced
(or enhanced) by use of the helical windings. In the procedure
2, it is shown that the expected transport (also the plasma
temperature ) remains unaltered, while the rotational
transform can be controlled to find the best stability
windowlz) and the equilibrium with high B value. These two
typical procedures are illustrated in Fig.7. The above
considerations seem to be too idealized. We presuppose that
other transport processes such as the radiation loss do not
change appreciably in both the procedures, and the stability
window is wide. Moreover, we presume that the confined plasma
is free from the tearing mode which strongly depends on the

current distribution.



6 Conclusions

We summarize our conclusions in the followings.

In high density and high current tokamaks, the current-
driven drift instability is responsible for the transport,
which tends to the standard collisional drift instability in
the sufficiently high density region.

The scaling law is deduced from the anomalous transport
coefficients based upon the non-local theory and some arguments
of non-linear dynamics. The limiting cases of the scaling law
is as follows. The energy confinement time scales as TE «
nqg/vY/T due to the pure current-driven mode in the relatively
lower density region and e B/Y/n due to the standard
collisional drift instability in the higher density region.

Numerical examples of the transport coefficients are given
for the J.I.P.P. T-II device. The present experimental conditions
correspond to the case where the above scaling law can be
applied.

The radial dependences of the transport coefficients are
discussed by assuming both the types of radial distribution for
the plasma parameters, gaussian and algebraic. The scaling law
referred to the averaged parameters is thus found to be
adequate for the arguments of the gross confinement time. The
radial distribution of the perturbed density or potential can
be calculated; its amplitude increases as the plasma radius
increases. The inclusion of the temperature gradient enhances
the pressure perturbation as shown in eq. (A-10),

For the operation by use of the helical windings in

- 17 -



J.I.P.P. T-II, two typical procedures are proposed. In the
first procedure where one lets the helical magnetic field
increase keeping the total transform angle constant, the
energy confinement time is expected to becomes longer, while
MHD activities are not so much affected, provided that this
procedure is along the stability window. In the second
procedure of keeping the plasma current constant, MHD activities
under almost the same transport coefficients will be studied.
The validity of the present model will be tested by these
procedures.

For detailed comparisons of the present model with the
experimental results (which are not enough at present), a
computer work is required. Further study on the basis of our

treatment is also necessary.
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Appendix

We present the treatment of the electro-static current-
driven drift wave in a sheared magnetic field, where the
effects of both the electron and the ion temperature gradients
are included, but the contribution of the trapped particles is
neglected. The treatment is an extension of the previous
works.l3)

The geormetry we use is a sléb and x-axis is taken in the
direction both of the density gradient, vn = —Knﬁ, and the tem-
perature gradient, VT = —KTT &. The magnetic field is given as
§=(0, X/Ls’ 1)B, where the plane x=0 corresponds to the
rational surface and LS is the shear length. The potential
perturbation is written as ¢(§,t) =¢ (x)expl[iky-iwt]. The
longitudinal current is carried by electrons, so that we use
the relation J = -neu. In the following, subscripts i and e
denote ion and electron, respectively. mj and vj = (Tj/mj)l/2
are the mass and the thermal speed, T = Te/Ti' We consider the

strong shear case, 1 < KLS << mi/me. As equilibrium distribution

functions we use

. vy 2+ (v_-u)? vitlv,mw?® g
£ = 0 o~ 3 +Kj(x+vy/Qj)(l+nj_____;___ - gnj)]
0j (ZﬂVj2)3/2 2vj 2vj
(A-1)
where v, 2= vx2+ vyz, ny = Kp/ Ko ij(x) = Tj(x)/mj. For the

ions we set u=0.
The basic equation for the current-driven universal drift

mode is written in the dimensionless form as

- 20 -



2
dr?
kv.p. A+w, A
B 3 11 T
I R N i o
; . '
o = (twtu A +w,pbat), A= 2= Gamledl o
n.T
— _ wA' Nete _ _ -b
n(g) = " (n0e¢ 1) , A _Io(b)e ,

where @, = kKTe/eB, Wep = NjWaxr Py is the ion Larmour radius,

i
I0 is the zeroth order modified Bessel function and ' denotes
the derivative with respect to b. Note that u? can become
negative. The real frequency is given by X = 0, that is
AU)* + bA'w*T
w = 1+t - 1A

(A-3)

We neglect the secondary (de)stabilizing effect by the real
frequency shift. Figure A-1 illustrates the region in the b—ni
plane, where ¢ < 0 and p? < 0 hold. 1In the regions B and D,

w < 0, and p? < 0 in the regions C and D.

Firstly, we analyze the mode whose eigen function is
piopagating type (u? > 0) and show that this mode, which is
generally considered to be stable in the presence of the fairly
steep electron temperature gradients), becomes unstable because
of the longitudinal current.

To solve eq.(A-2) with eq. (A-3), we use the complete
ortho-normal set {¢n} with the boundary conditions for the wave

to be out-going and to be regular at x=0. We express the

potential perturbation as ¢(z) = za ¢ (z),

- 21 -



. — -- 2
b)) = (igol/“;%; H (/2hig) e MR /2 (a-4)
n:

where Hh is Hermite function and . satisfies the differential

equation

2
[ 32 F gzl o = 0, Ay = dp(2n+l). (A-5)
3e

Multiplying O from the left side of eq.(A-2), and integrating
over r, we rewrite it into a secular equation,

z anan = ( )\m - ) am (m = 1,2, ¢o0) (A-6)

v = J- 6o (In(2) o, (2)d

In order to solve the above equation, we introduce a smallness

4)

parameter, g = /Jge, to truncate it. For a system with the
fairly strong shear, ¢ is of the order of /Eﬁ;ﬁ;7ﬁ;, we retain
the terms of the lowest order in ¢. The féct that the high m
modes are strongly damped (Am « 2m+l) confirms this truncation.
If we let n; = ng = u = 0, and demand Im )=0, we obtain the
critical shear for the universal mode given in Ref.[4]. On the
other hand for system with the current, as remarked in Ref.[6],
N (%) has essentially asymmetrizing effect on ¢ with respect to
r. 1In order to include this effect, we take (a,, a,) set and
solve eq.(A-6) in 2 x 2 truncated matrix form. Even in the
presence of the current and temperéture gradients (u, N
ni=0), ¢ << 1 holds. As another smallness parameter we take

u/ve and retain terms in an up to the 2nd order of u/ve. If

we limit ourselves to the case where n; = Ng = 0 and
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w = w, hold, the following results recover the result in

Ref.[6]. After some calculations one obtains,

>
|

- - — - z -—
[(AO—VOO+A1 vll)+/(>\0 Voo~A1¥Vy1)F +4V, j71/2, (A-17)

(w*-m-w*m/2)A'

Voo = 1 o /EIEKO(/EIé) (A-8.1)
v, = - (w*-w;?*%/2)A' ezKl(/iié) o (A-8.2)
Vg = Vip = & 24;2 /EIéKl(/EIé) , (A-8.3)
The growth rate y is given by -Imio'/A' (1+t-TA};. The condition

Im X\=0 gives the equation for the critical shear stabilization

condition,

35 ((.U*_w—w* 2) ]
6 3 +Sgln£§ 7 Z/ u2—2(§$vg)2u >0 . (A-9)

& e
To obtain this, we don't treat the n(z) term in eq.(A-2) as a
perturbation from the rest. Products of two expanding
parameters ¢ and uz/ve2 and higher order terms are neglected.
When we consider the case where u/ve=0 with fairly steep
electron temperature gradient, we see from eq. (A-9), that the mode
is stable even in the shearless field. However, if there is a
force free current in the plasma, Ne alone is insufficient to
stabilize the current-driven (CD) mode, and the concept of the
critical shear becomes important. From eq. (A-9) we find that
even in the presence of ng > 0, the mode becomes unstable
unless the shear is sufficient. Because the instability source

of the CD mode, k,u (=kux/LS), is proportional to the shear
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strength, the growth rate of this instability is affected not
directly by the convective damping but by the localizing effect
of the shear. We note that the instability driving term due to
the current is insensitive to the shear.

Another important fact is the ion temperature gradient
effect on the CD mode. One effect is as follows. The value yu
becomes small as ny increases ; the ion temperature gradient
tends to reduce the shear stabilization effect. As p decreases,
the convective damping decreases faster than the wave
localization effect. So that as ny increases the current
destabilizing term remains large in comparison with other terms
in eq. (A-9). Another effect of n is that the real frequency
decreases and even becomes negative as indicated by eq. (A-3).
The value of nj to change the sign of w, Uty is also plotted in
Fig.A-1. Inﬁiegion B where p?> > 0 and n; > ng hold, the
electron temperature gradient becomes destabilizing source.

The sign of the second term of eq.(A-9) changes and the
critical shear condition becomes harder.

In the above arguments we study the case of py? > 0. As
nj increases to exceed the critical value n, u? < 0 holds

and the convective damping by the shear is annihilated. The

effect of the shear turns out only to determine the wave
localization width. The method to analyze this mode is almost
the same as discussed before. The difference is that the term
iy is replaced by p (or -j). As the boundary condition we
demand the wave vanishes as |x| » ~. The eigen function of

this evanescent type gives rise to a real frequency shift
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instead of the convective damping. The critical shear is given
by the same condition Im )A=0. In the region D of Fig.A-1 the
critical shear is given by |u| > |wA'u//§vea'|. In D the mode
is stable in the absence of u. 1In region C in Fig.A-1l, where
the mode is unstable even if u=0, the shear stabilization may
be impossible. We see that the current driven mode is
insensitive to the convective damping, because the driving term
becomes greater as the shear increases.

Finally we estimate the ratio of the pressure fluctuation
(B/p= % J v2f d3v/p) and the density fluctuation (n/n= J f d%v/n).
In the sheared magnetic field, these fluctuations have profiles
around the rational surface. The profiles of n/n normalized to
e¢/Te and (p/p)/(n/n) are shown in Fig. (A-2) as functions
of the distance from the rational surface. When we compare the

peak values of the fluctuations, we find
(B/p)/(f/n) = (1 +n,) . (A-10)

The contribution from the current to the fluctuation levels is
small, although its contribution to the particle and heat
fluxes is larnge.

Our result about the ny effect, destabilizing when ny > 0,
is opposed to the numerical calculation in Ref.[5]. This is
because the ion temperature effect is misincluded in the basic
equation of Ref.[5].

When the value of ny is very close to the values g and/or
Ngr our analysis is inapplicable because d/drz term or higher

order derivative terms are no longer negligibly small in
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deriving eq. (A-12). When n; becomes fairly large, the ion

branch which is not analyzed here may become of importance.



Fig.1l

Fig.2

Fig.3

Fig.4

Fig.5

Fig.6

Figure Captions

Slab model

The energy confinement time T is given as a function

E
of the averaged density. The transport in the lower
density region is determined by the current-driven
instability, while in the higher density region the
ordinary collisional drift instability is responsible
for it. The expected experimental conditions in
J.I.P.P. T-II device are also indicated.

u/ve is the electron current velocity divided by its
thermal speed and l/|<Ls is the scale of the density
gradient divided by the shear length. Both the
quantities are plotted as a function of r/a for two
values of Neg = V1ln Te/Vln n, assuming the radial
distributions in Table 3.

The radial dependence of the diffusion coefficient D
for the different values of the averaged density n.
The dependence of the diffusion coeffecient on the
density n for the different positions in the radial
direction.

Schematic diagram of the instability criteria in

(r, n) space. The shaded portion for each Ne is the
region, divided by the solid line veff/wb = 0.5,
where the dissipative trapped electron instability
may appear. The dotted lines show the condition of
veff/wb = 1. The chained lines show the condition of

u/ve=l/KLs. The expected experimental conditions in
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J.I.P.P. T-1I device are also indicated.

Fig.7 Two typical experimental procedures by superposing
the helical magnetic field in J.I.P.P. T-II device.

Fig.A-1 The b - ny plane divided into 4 regions. In the
regions B and D,w < 0 holds. In the regions
C and D, p? is negative and the convective damping of
the wave is annihilated.

Fig.A-2 The levels of the perturbation in the vicinity of the
rational surface at r = L The line 1 shows the
density perturbation normalized to e¢/Te, and the

line 2 shows the ratio (p/p)/(n/n).
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