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Abstract

The nonlinear Schrddinger equation with a nonlocal-
nonlinear term, which describes modulated Langmuir waves with
the nonlinear Landau damping effect, is solved by numerical
calculations. The effects of nonlinear Landau damping on
solitary wave solutions are studied. The results show that
the solitary waves deform in an asymmetric way changing its
velocity. The time evolutions of a periodic modulation are

also studied.



g1 Introduction

It has been shown by Taniuti and one of the authors (N.Y,)
that one-dimensional nonlinear modulation of plane waves in
dispersive systems can be described by the nonlinear schroddinger

equationl):

2
i%—% + (p/2)28 + o|u|2?u = o0, (1)
9 %2

where u is the complex amplitude of a plane wave varying slowly
due to modulation and P and Q are parameters which represent
the strength of dispersion and nonlinearity. This equation
describes a wide class of physical phenomena which involve

2)

modulational instability of water waves

3)

, propagation of heat

pulses in anharmonic crystals

4)

vortex filament ', nonlinear modulation of collisionless plasma
5) ,6)

, helical motion of a very thin

waves and self-trapping of a light beam in colour-disper-

7)

sive systems’ ’.
In the modulationally unstable case (PQ>0), the initial

value problem of the nonlinear Schrodinger equation was

investigated numerically by Karpman and Krushkal'8)

9), and Satsuma and Yajimalo). Zakharov and Shabat

, Yajima and
Outi 11)
first obtained analytical solutions of eq.(l) by applying Lax's

methodlz)

to solve nonlinear evolution equations. A given
initial disturbance breaks up to a train of solitons. The
solitons work as stable entities through the time evolution of

solution.

It is well known that in real plasma systems a wave



interacts strongly with the resonant particles, for example,

a nonlinear modulated wave is scattered by the particles

moving with the velocity equal to its group velocity, If the
velocity distribution of the particles is Maxwellian, this
scattering leads to the nonlinear Landau damping. Ichikawa and

13)

Taniuti studied this phenomenon and modified eq. (1) to :

i%% + (P/Z)Ei% + Qlu]?u + R&{m lEi%ééELLde'u = 0,(2)
0xX -

where f denotes the Cauchy principal value. The nonlocal-

nonlinear integral term with coefficient R represents the

resonant effect of nonlinaer Landau damping. It is noted that

for the modulation of ion waves Q changes the sign depending on

the ratio of the ion temperature to the electron temperature.
We now consider the effect of nonlinear Landau damping on

nonlinear wave modulations. We substitute

u = [¢0+¢1ei(qx—mt) + ¢2e-i(qx—w*t)]e—iwot (3)

into eq.(2) and linearize with respect to the perturbed amp-
litudes, ¢1 and ¢2, where asterisk denotes the complex
conjugation. It can be readily shown that the dispersion

equaiton is

€
I

-Q |¢0l2, (4)

€
1

(qu“/4)[1—(4Q/Pq2)|¢0|2+i<4nR/pq|q|)1¢0|21. (5)

We put w = Q + il', where 2 and I' are real, to obtain



Q2- r2 = (P*q"/4)I[1 - (4Q/Pq2)l¢012]: (6a)

Qr = (TrPquq\/2)\¢>0|2. (6b)

Without the nonlinear Landau damping, R = 0, egs.(6a) and (6Db)
give the usual stability condition; the system is unstable if
(4Q/Pq2)\¢0|2 > 1 and otherwise stable. Whilst, with R # 0,
the growth rate I never vanishes and plasne waves become un-
stable. If PR>0, we find that T>0 for the disturbance with
Qg>0 and T'<0 for Qg<0. The amplitude of modulated wave,
thereby, grows when it propagates in the positive x-direction
and damps in the opposite direction. If PR<0, the situation is
reversed.

In this paperJr eqg.(2) is solved by numerical computations
in order to explore how the nonlinear modulated waves,
particularly the solitary waves, evolve under the influence of
the nonlocal-nonlinear integral term. In §2, modulationally
unstable case (PQ>0) is studied. The modulationally stable
case (PQ<0) is dealt with in §3. 1In both cases R is taken to
be positive. The reductive perturbation method applies to
investigate the behaviour of a slightly modulated plane wave
with small nonlinear Landau damping for the case (PQ<0).
Evolutions of a periodic modulation are studied in 84. The

final section is devoted to the summary.

+ A part of this work (882 and 3) has been published pre-
liminarily in Reports of Research Institute for Applied

Mechanics 22 (1975) 89.



The difference scheme used to solve eq. (2) is presented in
Appendix. In numerical computations, the runs were inspected
at every step by using the conserved quantity, I =[ lu(x,t)? dx.
The relative error, IAI/II, was within 0,71% through our

calculations.

§2 Numerical Solutions 1

Behaviour of Envelope Solitons (PQ>0)

In the present case (PQ>0), eq.(l) has an envelope-soliton
solution, which satisfies the boundary condition that u(x,t)

and its derivatives vanish at x =tw ,

S(x,t) = explil (v/P)x-(V?/2P)t+(QA2/2)t}]

X  Asech(V)/Pn(x-Vt)] . (7)
Putting V = 0, we have a soliton at rest,
S, (x,t) =expli(QA’?/2)t]Asech[/Q/PAx], (7')

In phrase of the Schrddinger equation, the nonlinear term of
eq. (1) works as an attractive potential if 0>0 and prevents
diffusion of wave packet due to the dispersion term, so that

the stationary soliton solution (7) can exist.

2.1 The soliton solution (7) does not satisfy eq. (2) and
deforms under the effect of nonlocal-nonlinear integral term.

We now study the initial value problem for eq. (2) with

u(x,t=0) =Asech[/Q/Pax]. _ (8)



If R = 0, the solution is just the soliton at rest, (7'). For
this u, the integral term in eq.(2) is positive for x>0 and
negative for x<0. As we consider the case of R>0, this implies
that the nonlinear attractive force is enhanced for x>0 and
weakened for x<0. The wave form, therefore, rises more steeply
from the right than from the left. The nonlinear Landau
damping thus leads to an asymmetric deformation of wave form.
The integral term produces another effect ; the amplitude A
slowly increases with x and then the phase (QA ¥2)t of soliton
solution (see (7')) advances more rapidly in larger x. As can
be seen from (7), this makes an effect of Vv # 0. Therefore,
the soliton which is initially at rest comes to move.

The numerical solutuions to eq.(2) with initial value (8)
are illustrated in Fig.l. There we take P =Q =1 and A = 1.
It is observed that the soliton deforms in an asymmetric way and
comes to travel. This agrees with the feature shown in §1 by
a linear analysis ; waves propagating in the positive x-
direction grow, those in the negative x-direction damp and as

a result the wave packet moves to the right.

2.2 Equation (1) has a solutionlo)’ll)
. 2 4 iQA2 t
u(x,t)=4AelQA t/2 ch(3Bx)+3ch(Bx)e ’ (9)
: * ch (4Bx) +4ch (2Bx) +3cos (40A% t)
which satisfies the initial condition
u(x,t=0) = 2Asech(Bx), B = /Q/P A, (10)

This solution does not decay into a train of solitons and the



envelope pulsates with a period ﬂ/(ZQAz). It has been already
shown that if a disturbance with an asymmetric imaginary part
is inflicted on this bound state of solitons, it decays into
constituent solitonslo).

We now solve eq.(2) with the initial condition (10).
The symmetry of u breaks due to the nonlinear Landau damping.
Owing to such an asymmetry in u, solitons which are bound in
its initial state are made to be free. Each of solitons

travels with changing its shape and velocity. Examples are

illustrated in Fig.2, for P =Q =1 and A = 1.

§3 Numerical Solutions 2

Deformation of Dark-Solitons (PQ<0)

We introduce the amplitude and the phase of u as

u(x,t) = /n(x,t) expli® (x,t)/P], (11)

and substitute this into eq. (2), to get

%‘% + 52(nv) = 0, (12a)
ov ov

an 9 3 ,9n — —
3t * Vax - PO5x -(P2/4)5—x-[{g§(5-}—{ //n) }/vn)

“  dx' dn(x',t) _
- PR ‘PJ_O‘, Tox v = 0, (12b)

where v = 236/93x. If the higher derivative term and the non-
local integral term are neglected, egs.(12a) and (12b) are reduced

to the hyperbolic system of equations (note that PQ<0), in



which the nonlinear steepening occures.

The presence of the higher derivative term, which
represents the dispersive effect, prevents the nonlinear
steepening and leads to an emission of solitons.

Equations (12) without the intergral term have following

soliton soltuion ;

n(x,t)=n0[l—Asechz{(c/P)/X(x—Att)}], (13a)
v(x,t)=Ai;c/T:X/[l—Asech2{(c/P)/K(x—Ait)}], (13b)
A, = vt c/1-3, c = /—PQno, (13c)

where n0 and v0 are the boundary values of n and v, respectively,
at x = to. The double sigh in eq.(13b) is chosen according to
the propagation direction of soliton; i.e., -sign for X+ and
+sign for A_, It is noted that the above soliton with K+ (or

A_) represents the defect in the amplitude, propagating in the
positive (or negative) x-direction. This soliton is called a

dark-soliton.

3.1 The effect of the nonlinear Landau damping on such dark-
soliton solutions is studied by numerical integration of eq. (2)

with the initial value
u(x,t=0)=/ﬁ'0_[l—Asechz{(c/P)/Kx}]l/2 exp[+il (c/P) VI-Ax
+ tan~ ' (VA/T(I-A) tanhl (c/P)YEx1)1}1.(14)

For R = 0, the solution evolving from this initial value



corresponds to the dark-soliton solution (13), but is observed
in the frame moving with the soliton velocity.

The numerical solutions to eq.(2) were obtained for P =
-1, =1, R= 0.5 and A = 0.1 and are illustrated in Figs.3
and 4. It is seen that the dark-soliton moving to the right
damps and one to the left grows. The results in early stage
are consistent with an anticipation by the linear analysis in
§1 (note that PR<0), For large t (>2.56), however, nonlinear

effect becomes dominant.

3.2 It is interesting to study the case that the nonlinear
Lnadau damping is sufficiently small and is of the same order
of magnitude as that of modulation. 1In this case, we can apply
the reductive perturbation methodl4). Assuming the modulation

to be small, we now expand n and v in powers of a small

parameter ¢,

n=n +en_ +e’n + eeo, (15a)

(15b)

<
]
m
H<
+
™
N
<
N
+

In order to take into account approximately the competition
between two effects, nonlinear steepening and dispersion, we

introduce the stretched coordinates :

El = /e (x—ct—/Ewl), (16a)
52 = /e (x+ct—'/€¢2), (16b)
T = /g3 t, (16c)



where ¢ is given in eq.(13c). The stretched variable gl(or EZ)
represents the phase of soliton which travels in the positive
(or negative) x-direction. The phase shifts wl and wz are due
to the mutual interaction between waves moving right and left

and considered as functions of £ , £ and 1. Suppose that
1 2
R = ¢r, (17)

where r is at most of the order of unity.
Substituting egs. (15) - (17) into egs.(12), we obtain a
set of equations to be solved for the successive powers of €.

In the lowest order, we get

v1 + (c/no)n f(El, T), (18a)

v - (c/n )n g(g , 1), (18b)
1 0 1 2

The functions f and g can be obtained from the non-secularity

condition of the next order equations.

5/2
In the order ¢ / , we have

2 2 2 0 '
2 [2cF+{§3 _9° , P 3%g _rc J g(g') ac'}]

Q|

2

B R o TRl (o

+1 (19a)

&
|
N
Q
QL
2l
—t
QJ\
(@]

=3 4 +
3&1 4 g 8c aglz 20 .
9g , 3 _3g p? 3%g _ rc ([ dag' 3g
tlag t 95E * 8¢ e+ 2 Fj_m FEIANIS ]




oy
_[%f + 2¢ Z]QQ_ =0, (19b)

351 352
where
F =v, + (¢/n,)n,, (20a)
G=v - (c¢/n )n . (20b)
2 (4] 2

The functions wl and y are chosen such that
2

At c ! 3E 8c. (21)

Substituting egs.(21) into egs.(1%9a) and (19b) and imposing the
condition that F and G are bounded, the non-securality

condition, yields

o0

of | 3.3f _ P? 33f rc _dg' 3f _
I T 5t Pl 5 -0 20
1 g o 7
29 4 3589 , P2 39 _rc o (7 _dg' 39 _
3T 49’3g2 T 3¢ g 3 20 P —w E,E T 0. (22b)
2

These equations are the same as that obtained by Ott and

Sudanls)

in studying ion acoustic waves of finite amplitude
with the linear Landau damping by electrons.

We note here that eq. (22b) reduces to eq. (22a) by the
transformation g -~ -f, 1t > -1, If r = 0, egs.(22a) and (22b)
have soliton solutions with negative and positive amplitudes,
respectively. For the case r # 0, the soliton moving to the
right, f, damps as time increases and the soliton moving to the

left, g, grows. This tendency agrees with the numerical

solutions with the initial condition (14) (see Figs.3 and 4).

- 11 -



§4 Numerical Solutions 3

Evolution of a Periodic Modulation

Here we study the numerical solution to eq. (2) obtained

with initial wvalue

u(x,t=0) = 1 + Bcos(Tx), (23)
If the nonlinear Landau damping is disregarded, i.e., if
R = 0, modulation goes as follows : For PQ>0, the modulation

once grows, then damps, and the initial state is almost

recovered. This process is repeated. When PQ<O0, the modulation
separates into two series of dark-solitons which propagate in

the both directions, right and left, and after a recurrence

time they focus at a common spatial point and almost reconstructed
the initial state.

Under the effect of nonlinear Landau damping, the
modulation behaves in an asymmetric way and the recurrence
property is broken. 1In course of process, the envelope
soliton (PQ>0) or the dark-soliton (PQ<0) should play an
important role. Especially in the case PQ<0, because the dark-
solitons grow or damp depending on their direction of

propagation, soliton formation can be seen more conspicuously.

4.1 For the case PQ>0, the numerical results are shown in
Figs.5 and 6, in which the calculations are made for B = 0,1
and 0.2, respectively, with the parameters P = 0.2, Q =1 and
R =0, 0.05, 0.1. Under the effect of nonlinear Landau

damping, the periodic modulation grwos in an asymmetric way

< 12 -



into a soliton-like pulse, which damps not as simply as shown

in Fig.1l but pulsating because of periodic boundary conditions.

4.2 When PQ<0, the situation is quite different form the case
PQ>0. 1In Figs.7 and 8, the numerical results for B = 0.1 and
0.2 are illustrated, where the parameters are taken as P =
-0.01, 0 =1, R= 0, 0.05 and 0.1. For R = 0, one can see a
tendency of dark-soliton formation. When R # 0, the growth of
dark-solitons travelling to the left is strongly in evidence.
The tendency is more clear for larger R. One can say that the
periodically modulated plane wave becomes broken in fragments
under the nonlinear Landau damping although the case PQ<0 is
modulationally stable for R = 0. The results are understood
from the discussions in §3, that the dark-soliton damps or
grows according as it moves to the right or the left (note that

the present case is PR<0).

§5 Summary

We solved numerically eq. (2) under various initial
conditions. The obtained results are as follows
1. For PQ>0, the envelope soliton damps deforming asymmet-
ricaliy and changing the velocity, due to the nonlinear Landau
damping. The bound state of solitons decays into a series
of solitons, which behave themselves in a similar way.
2. For PQ<0, the dark-soliton displays a different character
from the above envelope soliton. The dark-soliton damps or

grows depending on its direction of propagation,

- 13 =



3. The periodic modulation for PQ>0 deforms asymmetrically
developing into an envelope soliton which damps due to the
nonlinear Landau damping effect.

4, The periodically modulated plane wave, for PQ<0, decays
into a series of growing dark-solitons and becomes broken in
fragments. In early stage, the behaviours of these numerical
solutions can be interpretted by a linear analysis of

instability and the reductive perturbation method.
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Appendix

To solve eq.(2) numerically, we replace the partial

derivatives by the central difference quotients,
du/dy + [u(x,t+At)-u(x,t-At)]1/(2At)
3%2u/ox? > [u(x+Ax,t)-2u(x,t)+u(x-Ax,t)]1/a%* ,

where At and Ax are mesh size in the x-t space.

The integral term in eq.(2) is approximated as

*® ' 2 a3 2 5 ¢
J)J dx'ifi') = ‘GAX[%§ e px" S
- dx3 dax®
X-3Ax oo '
+ f + J ]dx'§é§Tl )
) v X+3AX

In deriving the above expression f(x') is expanded in Taylor
series of (x'-x) for the region x-3Ax<xXx'<x+3Ax. The
differential coefficients are approximated by the seven-points
difference quotients and the integrals over the residual

intervals are calculated by using Weddle's formula.

- 16 -




Figure Captions

Fig.1l Time development of solution for the initial condition
(8) with A=1. (a) R=0.2 and (b) R=0.5. 1In both
cases, P=0=1.

Fig.2 Time development of solution for the initial condition
(10) with A=1. (a) R=0, (b) R=0.2 and (c) R=0.5,

In all cases, P=Q=l.

Fig.3 Time development of solution for the initial condition
(14) with - sign. A=0.1, P=-1, Q0=1 and R=0.5.

Fig.4 Time development of solution for the initial condition
(14) with + sign. A=0,1, P=-1, Q=1 and R=0.5.

Fig.5 Evolution of periodic modulation (23) with B=0.1 (PQ>0).
The solid line corresponds to the case R=0, the broken
line to R=0.05 and the dotted line to R=0.1,

(P=0,2 and Q=1)

Fig.6 Evolution of periodic modulation (23) with B=0.2 (PQ>0).
The solid line corresponds to the case R=0, the broken
line to R=0.05 and the dotted line to R=0.1.

(P=0.2 and Q=1)

Fig.7 Evolution of periodic modulation (23) with B=0.1 (PQ<0).
The solid line corresponds to the case R=0, the broken
line to R=0.05 and the dotted line to R=0.1.

(P=-0.01 and Q=1)

Fig.8 Evolution of periodic modulation (23) with B=0.2 (PQ<0).
The solid line corresponds to the case R=0, the broken
line to R=0.05 and the dotted line to R=0.1.

(P=-0.01 and Q=1)

- 17 -
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Fig.1l Time development of solution for the initial condition
(8) with A=1. (a) R=0.2 and (b) R=0.5. In both

cases, P=Q=l1.
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Fig.3 Time development of solution for the initial condition

(14) with - sign. A=0.1, P=-1, 0=1 and R=0.5.
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