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Abstract

The dielectric function in a turbulent plasma is derived
based on the linear response theory, in which a summation of the
infinite series is made in order to gét the pair-correlational
effects exactly. This infinite sum can be performed with the
aid of diagram techniques and reproduces the dielectric function
obtained before by Kono and Yajima. The complex conductivity is
also derived by using a similar diagram technique and rightly
agrees with that obtained kinetic-theoretically by Nishikawa

and Ichikawa.

This work is motivated by Ichimaru's comment in the January issue

(1978) of J. Phys. Soc. Japan.



§1. Introduction

In a previous paperl)

» we have investigated the propa-
gation of a test wave in a current-driven ion-acoustic wave
turbulence, showing that the phase velocity of a test wave
decreases from'the value in a quiescent piasma'and there appears
the secondary instability associated with the decrease of the
phase velocity. This result is different from that of Ichimaru

and Tangez). Ichimaru asserts in his comment3)

that the origin of
the discrepancy is traced to ad hoc and unjustified assumptions
and to neglect of the vertex corrections in our analysis. In
opposition to Ichimaru's assertion, however, the discrepacy is
originated from Ichimaru and Tange's incomplete calculations of

the pair-correlational effects. Ichimaru and Tange carried out a

high-frequency asymptotic expansion of the susceptibility
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and retained terms up to & = 4.‘However, the 2-th frequency
moment is not equivalent to the (2/2)-th cumulant, but involves
the contributions from all the correlations up to (%/2)-th order.
Thus, in applying the sum-rule analysis to the dispersion relations in turbu-

lent plasmas, one should make a summation of the infinite series to get the



pair-correlational effects exactly. This infinite sum can be
performed with the aid of diagram techniques and reproduces the
dielectric function obtained before by Kono and Yajima(§2). Such
a work of summing up an infinite series is overcome by regard-
ing waves as dynamical variables. In §3, the complex conductivity
is derived wifh the linear response analysis by using a similar
diagram technique, leading to the result obtained kinetic=

theoretically by Nishikawa and Ichikawa4).

§2., Dielectric function in a turbulent plasma
The dielectric function e(q,w) of the plasma is defined
in terms of the retarded density-density response function
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where o and B denote the species of particles, and
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0,0 (K) = 4ﬂeae6/k2, [A, B] =AB - BA.

The braket <'°->0 denotes an ensemble average in a sense of
Klimontvich.
The main task is to calculate the r.h.s. of eq.(l) with

the aid of the perturbation expansion. By using the following

relations,
,ﬁz
J
e = My peyn - Adk Ho(A)]
P o 1 11747

where A = (i/A)t, HI(A) = eAHOHIe'AHO and P indicates the chrono-
logical operator, the density fluctuation in the Heisenberg

representation reduces to the form
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Corresponding to the expansion(3), we put
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which is easily examined by direct calculations, we obtain
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where <Fa(r,v)>0 = Fa(v).
Here, we define the linear dielectric function as
e (qu) =1 - 33 x5g (@0 (8)



Proceeding to the next step, we find
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The second term in a brace of the r.h.s. of eq.(9) has no contri-
bution to xéé) for the classical limit. From eq. (9), x(l) is
obtained as
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where we have introduced the correlation function
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Gas(r—rl;v,vl) = <Fa(r,v)FB(rl,vl)>0 -

—6a86(r—r1)6(v-vl)Fa(v) - FG(V)FY(VI)' (11)
It should be noted that egs.(7) and (10) are all calculated by
Ichimaru and Tange.

Here, we notice that if we restrict our interest to the
pair-correlational effects of turbulent waves on the dielectric

function, the polarizability can be systematically calculated

with the aid of diagrams listed in Table 1.

Table 1

Equation(10) is represented by diagrams as shown in Fig.1l.

Figure 1

The construction rules of diagrams for x(n)(q,w) are quite simple.
First write down the schematic figures for pén)(q,k) which are

easily anticipated from egs.(3.1) and (5). For example, we find

Fig.2-(a) for p'l) and Fig.2-(b), (c) for p'?).

Figure 2

Next, as is clear from the correspondence of Fig.2-(a) to Fig.1,



add external lines to the end of the solid line in the figure for
pén), take an ensemble average and retain only contributions from
the pair-correlations by using the Mayer cluster expansion.

Diagrams for ﬁi) correéponding to péz) are shown in Fig.3.

Figure 3

The disconnected diagram in Fig.3-(b) represents the renormali-
zation of the pair-correlatinal effects to the "bare" distri-
bution function( distribution function in a quiescent plasma).
If <Fa(r,v)>o is taken as the "dressed" distribution function
(distribution function in the stationary turbulent state), this
disconnected diagram must be discarded in order to avoid double
counting. On the contrary, if <Fa(r,v)>O is regarded as the
"bare" distribution function, the disconnected diagram should be
included. It is shortly examined that x(3) consists of forty-two
topologically different diagrams.

Now, we are ready to make a summation of infinite
series-of the expansion(4). The diagramatic equation for x(q,w)is

written as

'
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x( q,w ) = M + "
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where the renormalized propagator is defined

EETEESE—— = P(l (k,v,w)

. (13.1)

]

and the renormalized external line is defined

+ M . (14.1)

- e a» o
- e aw o> -

Equation(13.1) for the renormalized propagator Pa(q,v,w) is

represented as
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This can be solved as

‘ oF (v)
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A+B A a2 a t*t

has been used. For the renormalized external line, we have from

egs. (14.1) and (15),

1/2_%g ! a3
= 2(4m) é . . (14.2)
B g Cab 0] o v

.

As is noted before, since we restrict ourselves to the
pair-correlational effects of turbulent waves on the dispersion
relation, we'may use the linear eigen-frequency for the
turbulent waves in calculating the right hand side of eq. (12)

except for the first term. Thus, we may assume for a stationary

turbulence

®a - -1 &k aFa(V)
1) = .Il—l; MR B ;{7' v §4neYIdv2GYB (k'VZ'vl) ¢ (16)

GaB(k;v,v

where w(k) is determined by e(o)(k,m(k)) =0

Here, we summarize the identities proved straightfowardly for the

convenience of following calculations.
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Vl(q,w;k,w(k))Gl(q—k,w-w(k):q,w)

+ ) } u(k), (18.2)
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4ﬂea 4'neB
U(k) = gg k2 k2 Idv[dv GaB(k;v,y ) .

t

The other terms of eq.(12) can be calculated in a similar way,

and we put them in Appendix.

The result is now written down as

(0)
_ 1l-€ (91(0) 1
x(q,w) = + {(v,(g,w;k,w(k);-k,~w(k)) +
e(o)(q.w) [e(o)(q.w)IZE 2

Vl(q,w;k,w(k))Vl(q-k,w—w(k);q,w)

+ } U(k), (20)

e (0) (gq-k,w-w (k))
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Then the r.h.s.of eq.(1l2) is calculated as follows;
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where

Vl(Y:Y]_) = Vl(YIYl) + Vl(YrY‘Yl),
VZ(Y'yl'YZ) = V2 (Y:Ylfyz) + vz(YIy-YI-YZIY2) + V2 (y'yl'y_yl_y2) ’
y = (k,w).

From egs.(2) and (20), we get the dispersion relation by retaining

the effects of the turbulent waves in the lowest order;

el@w = ¢ (@ - § { V,(auik,0k)-k,-uk) +

Vl(q.w;k,w(k))Vl(q-k,w-w(k);q.w)
€ (q-k,w-w(k))

which exactly agrees with eq.(22) in Ref.l).( Note that the
calculation of Ref.l) is based on the representation by the "
bare" distribution function.)

Above calculations carried out for the system of many
species of particles show that Ichimaru and Tange's analysis is
incomplete for both the Langmuir turbulence and the ion acoustic
wave turbulence.

As to Ichimaru's comment on the vertex correction by
which he meanss) the orbit modification of plasma particles
caused by scatterings with turbulent waves, our analysis takes

acount of it in the lowest order with respect to the wave energy.
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This is clear from Fig.4 which represents Gz(q,w;k,w(k);q,w)in

eq.(21) in terms of Ichimaru's diagramss).

Figure 4

At the end of this section, it should be remarked that
Ref.5) by Ichimaru does not give a correct dispersion relation
in a turbulent plasma, because he has not carried out the re-
normalization of the wave-wave interaction to the wave propagator.
It was only the renormalization of the wave-particle interaction

to the particle propagator that he made.

§3. Complex conductivity

In this section, we calculate the complex conductivity.
The complex conductivity is expressed in terms of the current=
current response function as

ow(@ = op (w8, + (1/iw) (l/i‘h)JodT ¥t <3 (w),3,(0)]>

or (22)

where y and v indicate the component of the tensor, and oo(w) is
a reactive conductivity; co(m) = (l/iw)é Nei/ma. Since the current

operator can be expressed as

- m . .
3, = (e /m ) 5%; RCIEIY) (23)
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the second term of the r.h.s. of eq.(22) is easily calculated in
a similar way as before. In this case, that Ju does not depend on
the wave-number gives particular simplicity which is anticipated

from the relation

_ N ~t
(H (M), 3,1 = ZEE (e /m) e g (k)Bk o, (k,MK) pg (K, AK) . (23)

Introducing diagrams listed in Table 2,

Table 2

the complex conductivity can be expressed as
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2 1
(L/w%) gE&(l/2)(ea/ma- eB/mB) kukv ®a8(k)Idvfdv X
(24)

X {(eu/ma)Pa(k,v,w+w(k)) - (eB/mB)§§—k,v',w-w(k))}GaB(k;v,v').
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Note the relation

1
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where §_, (k) = jdv]dv Gyg (kiv,v') and 4wx(0)(k,w) = -Ex(o)(k,w).

Then we get

(w) - - (r/ud s e /m - e /m) -
I,y (@) Ogl(w) = (i47n/w dE%;j— Co/My = €g/Mg e (0)

-k,w-w(k))

s o Sa, (0) (0)
x { ( EE ﬁ; - a;)ea 41rxB Saa(k) +

+ Leg/m)amx @ amx{® - (eg/mp el ef®) 5 )3, (26)

where e(o)
o

=1+ 4nxéo)

and we have suppressed the common argument
(-k,w-w(k)) in the functions e(o) and x(O). Equation(26) is
equivalent to eq.(32) in Ref.4) by Nishikawa and Ichikawa. This

shows also the invalidity of Ichimaru and Tange's truncation.
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§4. Discussions

In this paper, we have applied the linear response
theory to dielectric and conduction problems in a turbulent
plasma and obtained well-established results.

In the course 6f calculation, the ensemble has not been
defined explicitly and there have been appeared two possibilities
in handling the disconnected diagrams. As for the well=
established weak turbulence theory based on the representation by
the "dressed" distribution function, it is not simple to get the
vdressed" distribution function explicitly. It is still an open
problem to settle the "physical vacuum" in the stationary

turbulent state.
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Fig.

Fig.

Fig. '

Fig.

Figure Captions

Diagramatic representations of eq. (10).

(0) (1)

Schematic figures for Py - (a) for Py and

(b) , (c) for p'2).

o
Diagrams for x(z).

(b) corresponds to Fig.2-(b)
and (c) to Fig.2-(c).

Figure for Gz(q,w;k,w(k);q,w) represented by

5)

Ichimaru's diagrams
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Table 1
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Table 2
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Fig. 3-(b)
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Fig. 3-(c)
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Fig. 4
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