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Abstract

From a dispersion relation, linear growth rates of electro-
magnetic instabilities are obtained in an electron plasma whose
velocity distribution function has a high-energy-tail part. Theory
is developed to derive the reduction in the thermal flux caused by
these electromagnetic instabilities. Nonlinear theory leads to the
saturation level of instabilities. Numerical simulations are carri-
ed out by using PIC method. Reduction rates in flux limited theory
of thermal conduction predicted by the theory are found to be in

good agreement with computer simulations.



§1. Introduction

In laser-irradiated target plasmas, the thermal conduction
plays an important role in the implosion of targets and hence
in thermonuclear—fusioﬁ reactions in plasmas. Recent several
experiments have shown that the electron thermal conductivity
in the target-plasma was much reduced from the classical value [1].

"It is well known in the research field of laser fusion that
the light energy absorbed in the target contributes mainly to in-
creasing high energy electrons. Morse and Nielson [2] have attri-
buted the reduction in the transport coefficients to these high
energy electrons. OQuite recently, Manheimer [3] proposed a theory
that ion acoustic turbulence in laser-fusion schemes was a possible
cause for energy-flux limitation.

On the other hand, purely growing electromagnetic waves were
shown to be excited by electrons in a velocity distribution with an
anisotropic temperature. The preceding paper written by the same
authors [4] pointed out that propagating electromagnetic waves were
excited by a microinstability induced in an electron plasma with
nonvanishing thermal flux, vanishing current and vanishing tempera-
ture anisotropy. The purpose of this paper is to predict that elec-
tromagnetic waves induced by these microinstabilities reduce effec-
tively the electron thermal conductivity in plasmas.

In §2, the dispersion relation of electromagnetic instability
has been investigated by electrons in a velocity distribution with
the high-energy-tail part. In §3, quasilinear theory 1s used to
study the reduction in the thermal flux by electromagnetic insta-

bility. The saturation mechanism of the instability is presented



in §4. Comparison between the theory and the computer simulation

in made in §5, and finally in §6 we present summary and conclusions.

§2. Dispersion relation
The dynamics of the system under consideration are described

by the Vlasov-Maxwell equations

of of q 1 of
5t "V tn (B VXB )5y =0 (D
g = - L1 9B ‘
rot E = S 3¢ ¢ (2)
_ 1 3E 4nJ
rOtB-—EB—t“"T, (3)

where c.g.s. gaussian units are used, f is the electron distribu-
tion function at position r and velocity v at time t, g and m, res-
pectively, denote the charge ( including sign ) and mass of the
electron, c is the light velocity, J the current, while E and B
represent the electromagnetic field. Denoting the average of a
guantity over the ensemble by < > and its deviation from the aver-

age by & for an unmagnetized plasma, we obtain
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By subtracting (4) from (1), the equation for §f is obtained as
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In obtaining (5), we have neglected term <(SE + % vx68}§§§>,
To solve (5), we make use of a propagator U(t-t') which is defin-

ed as the solution of
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u(t'-t') =1 . (7)
The solution of (5) can be written as

.3<f(r',v‘,t')>
ov'

se(t) = - sfat v(e-t)I(EE(E") + T V'XSB(E")

(8)
To lowest order in perturbed field, (8) can be expressed in the

following form,

SE(t) = - f,oodTE% exp(-iwt + iwt + ik-r)
Av (1) .
<[ SE + Y OVEID) L kxSE Jexp (ik+«Ar(t))>
k,wk Wi k,wk
< ult) > 8<fé$:v,t)> (9)

where we have used U(t-t')r(t') = r(t) + Ar(t-t') and U(t-t")v(t')=
v(t) + Av(t-t'). Here also the approximations <f(t-1)>=<f(t)> and

U(T)=<U(1)> are used and the Fourier transformation
G(r,t) = % Gk,wkexp(—lwt+1k~r) (10)

is used for SE and 8B combined with Maxwell's equations. If we de-

fine I as

- v + Av(T) -
I = <[6Ek,wk + ——BE———— X kaEk’wk Jexp(ik+Ax(T)) > (11)

and confine ourselves to the configuration
k=(%k, 0, 0), SE=(0, 6E, 0 ) and sB = (0, 0, 8B ), (12)

the equation (11) reduces to
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where 1 and j are the unit vectors in the x and y directions, re-

spectively. Using the following relation

oAx _
TT— (Vx"l"AVX), (14)
we write
KVy  ik-ax (1) 13 ik - Ax (1)
I =8E < G"Z e Tsi o+ SE, <L 1+ g ez 1ot X,
» 0y K , Wy iw, 9T
(15)
where Avy has been neglected because of its independence on Ax.
Defining J as
J = &? ele<elk-Ax(T)> ar , (16)
we get
kv
] 1 9
5E = -1 9 g [ —L g2 - 2 29 jc6 (17)
k,wk k m k,wk Wy Bvx 1wk 8vy .

Substituting (17) into the space and time Fourier transform of
Maxwell's eguations, we obtain a nonlinear dispersion relation for

a purely transverse mode :
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where n is the number density and wp= /4ﬂnq2/m .

To treat the problem of electromagnetic instability, we model
the following electron distribution function with high energy part

as the ensemble-averaged distribution function
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where L vj are the velocity components in the i and j directions,
Vip s’ §Tj are the thermal-velocity components, V4 is the drift ve-
locity and a is the fraction of high-energy electrons. suffices c
and h refer to cold and high-energy electrons, respectively. Using
this model distribution function, we can evaluate the dispersion
relation in the linear theory ( by putting J = i/(wk—kvx) in (18) ).
By taking i=x, j=y or i=y, j=x in equation (19), we expect to have
two modes of instability as follows

1) If we take i=x and j=y in equation (19) ( mode 1 ), the disper-

sion relation can be obtained as follows :

2 c2 c 2 h2 h
(l-c)w_ v w + kv oW v, w —-kv
02 - (Wl + k2% + P TY y( d, , P TY dy -,
p VC2 kv, th kvh
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(20)
where the function W is defined in the form

W) = (2m Y2 T e exp(-c?/2) ar . (21)

To determine growth rates of induced electromagnetic waves, we ex-
.. .. c
amine (20) in the following limits. In the limits |(w+kvg)/vaxl«l

and I(w—kvg)/kvgx{«l, (20) can be approximately solved as
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where we write w as w = w.. + ivy.
Instability occurs for wave numbers such that
w2 Vc2 Vh2
2 2 _p _ Ty Ty _
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The growth rate vanishes for k=0 and k=k. and has a maximum

0
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2) 1If we take i=y and j=x in equation (19) ( mode 2 ), the disper-
sion relation can be calculated as follows :
c2 c2
v + v
w2 - ( c2k2 + mz ) + w2 (1-a) Ty d W( — )
p p ch kve
Tx Tx
Vh2 + Vh2
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In the limits Iw/kvgxl«l and Iw/kv?xl«l, (26) can be approximately



solved as
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Instability is found for wave numbers which satisfy
w2 Vc2 + VcZ Vh2 + vh2
2 . Py (1-q) Ly 4 Ty 4 _
k™ < c2 [ (1-0) VC2 + o th 17]. (29)
Tx Tx
The maximum growth rate is obtained as
w Vc2 + vc2 vh2 + vh2
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€ Virx Tx
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§3. Anomalous thermal-flux reduction
To show the reduction of thermal conduction by the electro-

magnetic instability, we begin with the equation for <u(t)> [5],
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We suppose that <U(t-1)>=<U(t)> and J=i/(wk-kvx). In the configu-
ration (12), (32) reduces to
2
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This is also the equation for <f(t)>
2
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For mode 1, we take i=x and j=y in (19). The third moment of
(34) by use of (19) leads to the following approximate equation for

the thermal flux

2 h
]GBkI ws kva-w_

0, 2 _"a.._ (1gnl/2

Q = -Vefol (35)

kvh

2
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where Q is the thermal-flux defined by Q = m/2 fvx(vi + v;)<f>dv
and subscript a denotes averaged values with respect to cold and
high energy electrons. For the derivation of (35), we have assumed

that «<f> depends on x and t and velocities are in the following



ranges

. . c . . .c
va ( = Vo % Vg )y > va ( = Ve % Vg ). (36)

Q0 =--—2——2=-x . — (37)

where Keff denotes the effective thermal conductivity.

For mode 2, if we take i=y and J=x, we obtain the equation for

the thermal flux as follows

2 2
Q' | nTy 0Ty - 5 1/2 5 !GBkI “p R 2 .,
ot m oy -(m/2) 2 €3 )9
4mnmc va Txa
xa
= Verf?' 38

where Q' is the thermal-flux defined by Q' = m/2 fvy(vi + v§)<f>dv
and the resonance broadening effects are taken into account by use

of the resonance width [6]

2
‘aBk‘ ( VTxawp )2]1/4

R= [ (n/18)Y/% 3 (39)
2 '
4mnmc k
. h h c c
and relations v, = V and v__.= Vv are assumed to be held. Then
Tx Ty Tx Ty

we similarly obtain the following effective thermal conductivity

in the stationary state,

nTa BTa BTa

Ql = - —— = —K' [ (40)
mvéff 3y eff 5y

§4. Nonlinear saturation level

In order to obtain the saturation level of the instability,



one has to consider nonlinear process. It is proposed that the
nonlinear effect of the instability is a scattering of particle
orbits by waves. Waves which are linearly unstable grow until the
enhanced scattering causes their nonlinear growth rates to vanish.
To evaluate the function J, we start with equation (32). Multiply-

ing (32) from the right by exp(ik.-x(0)), we get

3 5 ik-x (0) 2 |53k|2 5
( 3t + v r Y<U (t) >e = jiw z —"—7—2-[ kv XTI
Pk 4mnmc "k Y X
- (w .+ kv )2 _ tk-x(0) 4y

9 . 9
-k <) 5% ][55 - 1kvyJ§;-]<U(t)>e
Y Yy X

The last factor in the right hand side of (41) can be treated as

follows
] . ] ik.x(0)_ 9 (ik-Ax) ik-x(0) ik« Ax
[ v T ik VyJ‘g’\; 1<U(t)>e . PE— e <e >
Y X
9 (ik - Ax) eik-x(O) <eik-Ax> ) (42)

ov

~-ikv J
b4 X

If we can make the further approximation sz—vxt, we have

[ 23— - ikv,g S J<w(e)>e™ X0 20 50 yir)selk x(0) 4,
ov y 9V Yy
Y X
Using (43), we obtain for the right hand side of (41)
2
SB, |
. 2 l k 3 0 3 . 3
i, L ——— [ kv =— - (w_,+ kv_) 110 - ikv_ J =— ]
P k 41Tnmc2k2 y avx k X avy 3VY y Bvx
ik-x%(0) 2 |58, |2 32 53
x<U(t)>e " = dwg I ———%— [ k7v_“t(iktd - =
P k 4mmck Y IV
+ K20ty + kv, )1<u(t) se K X (0] (44)
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If we can now make the further approximation in (44) as

~— = -iktJ ,

(44) becomes

9 3 2 3,2 ik-x(0)

[at+v—a?+@t+l"t ]<U(t)>e 0 ’

where
2
| 6B, |
0% = -iw? 3 —F 0 (w_ + kv )J
P k 4mnmc -k X
and
2
| 6B, |
o2y — K _x%2s
P k 4mnmc Y
From (46) we have
2 3
_ 67,2 _T7.3

<U(t)>-—<U(t)>0 exp ( -2-t §t) '

where <U(t)>0 is defined by
3 9 ik-x(0)

(E—E+V§}‘)<U(t)>oe 0

In the linear case, J can be written as follows
o 1 . o 1wt —ik .
J = 0 o 1WT <elkAX> ar = [PetWTeT v.T gt = E_%%TRZ; .

From equations (49) and (51), we get

2 3
oo . R ' 3
J = fo dt expl i(w- kVX)T -5 T - 37T 1.

The term 92 represents freguency shift so that we neglect it

(52). Equation (52) can be written as follows :

- 12 -
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3

J = Jy drt expl i(w - kVX)T - g T3 | (53)
where
3 o leml? L, 1 .33
r~ = 2wp b} ~§rk v, fo dt expl i(w - kVX)T - §vF T7]. (54)
kK 4mnme y
The nonlinear susceptibility XNL is described as follows,
2 2
kv 3
NL @ % .
X = —i% Joav[ —L ¢ Jo dt expli(w - kVX)T - §" T3] ) g;—
nw i X
+ v 9 ] <£> (55)
y 9V )

y

After Bezzerides and Weinstock's analysis [7], the time integral

(55) can be approximated by using a critical velocity Ve given by

(w - kvc)2 N 2F2(vc), (56)

and by replacing %TB(VC)T3 by %Fz(vc)TZ. With these approximations,

we can evaluate (55) and then solve the real and imaginary parts
of (18). At saturation, the real part of XNL is found to differ
from the real part of XL by a small amount which can be neglected

for the present purpose. Note that Im(XNL) nearly equal to Im(XL)

. . c2 h2 c2 2 2 h2
in which one replaces Vg and Vi by Vot 2T (vc)/k and Ve T
2T2(vc)/k2, respectively. That is
M) = (VA + 2% (v ) /K2, (57)
b c
Re (xT) = Re(xD). (58)

The nonlinear saturation level can be determined by the fact that
the nonlinear growth rate of unstable waves is zero at saturation,
i.e.,

m(l + "% = o. (59)

- 13 -



By using (23), (57) and (59), the saturation value of T(vc) for

mode 1 can be determined as the solution of the following eguation,

4 2.2, 2 c2 h2 h2
v + v v - ov
( C) [( 1 + k“c /wp ) ( Tx + Ty ) o Ty

( 1+ k%c%/w? )T
p
2 2.2 22,2 c2_h?2 h2 c2
- (1- c -
( a)va 1k°T (vc)/2 + [(1 + k“c /wp )vTXvTX aVTyVTx

c2 h?2 4
- (1—0t)vavTX 1k /4 = 0 . (60)

For mode 2, we can similarly obtain

(1 + kzcz/w; )F4(vc) + (1 + k2c2/w; y( vR2 4 C2

Tx vTx )

_ h2 h2 _ _ c2 c2 2.2
o ( va + vy ) (1-a) ( VTY + vy Y1k™T (vc)/2 + [( 1
22,2 h2_ c2 h2 h2 c2 c2 c2,_ h2
+ - - -
k“c™/w )vTXvTX a( va + vy )vTX (1 a)(va + \2 )VTX]
4
xk*/4 =0 . (61)
On the other hand, (54) at v=v_ can be simplified as
e2k2v2
v ) = 0.27(n/ /2 T2 5 |sB |2 (62)
m-c

Through the relation (60), (61) and (62), the saturation magnetic

field energy EIGBkIZ can be determined.

§5. Numerical simulation of electromagnetic instability

In order to simulate an electromagnetic instability, we carry
out a numerical calculation by using an electromagnetic particle
in-cell code [8] for electrons. The code is one-dimensional in
space (x) and two-dimensional in velocity (VX and vy). Ions are

fixed in space to form the charge neutralizing background. Induced



electric and magnetic fields are respectively indicated by E=(Ex
’

Ey’ 0) and B=(0, O, Bz). To determine the initial electron velocity

distribution function fo in (19), we choose the following parameters

. c _ c _ h _ h _ Cc_
for mode 1 : vTX 0.04c, va 0.05c, Vg™ 0.2c, VTy— 0.25c, V3s
h

3= 0.15c and a=1/6.

These parameters satisfy the condition that the electron plasma has

0.03c, v

neither current nor temperature anisotropy in the steady state as
given by the same authers [4] . Therefore we can expect that there is
no unstable mode propagating in the y-direction. The simulation is
carried out under the conditions that the grid spacing is 0.4c/wp,

the time step is O.Zw;1

,» the length of simulation range is 25.6c/wp,
and the total number of simulation particles is 4096.

Induced magnetic fields at the early stage are plotted in
Figure 1l(a), from which we can estimate that the maximum growth rate

YMax
which is given by the linear theory for kc/wp= 0.43. Figure 1(b)

is about 0.0lmp. This growth rate is consistent with’y~0.004wp

shows the intensity of induced magnetic fields. For the fastest

growing mode, i.e, kc/wp= 0.43, we obtain the intensity in the order

-3 Amnme? at saturation. On

of magnitude of B ~ 4.0x10

k=0.43wp/c
the other hand, by using (60) and (62) we compute the value of the

field fluctuation as kavll.leO“3

values are in good agreement with each other. 1In Figure 2(a), the

4Trnmc2 at kc/wp= 0.43. These

thermal and total energies are plotted versus the time, being sepa-
rated in the x- and y-directions for cold and high-energy electrons.
A drastic change in the energy flux Q is observed in Figure 2(b).
The energy flux Q decreases exponentially with the time, i.e.

3

chexp(—th) with inVB.lXIO— W The theory suggests that Vg is

- 15 =



also of the order of 1.6XI0—3wp.

For mode 2, we choose the following parameters : vgx= vgy
h h c h
= 0.05c, Ving™= va= 0.25c, Va© 0.04c, Lo 0.2c and a=1/6.

In this case we can expect that there is no unstable mode in the
y-direction. Induced magnetic fields at the early stage are plotted
in Figure 3(a), from which we can also estimate that the maximum
growth rate YMax is about 0.0lwp. The growth rate which is calcu-
lated by the linear theory is O.Olwp for kc/wp= 0.54. The intensity
of induced magnetic fields at the early stage is shown in Fig-

ure 3(b). The saturated magnetic field is in the order of B, _, ¢,
~4.5x10_3 /4ﬂnmcz. The theoretical value of the saturation field
is about 5.5)(10—3 /4ﬂnmc2 which is in good agreement with the com-
puter experiment value. In Figure 4(a), the thermal and total ener-
gies are plotted versus the time. Energies are re-distributed among
cold and high energy electrons and the anisotropy of the total ener-
gies remains even at the final stage. The energy flux in Figure 4(Db)

~

decreases exponentially with vavl.SXlO"jwp. The theory suggests

that vQ is also of the order of vofv2.5K10—5wp.

§6. Summary and conclusions

We have investigated thermal-flux reduction in the electron
plasma by electromagnetic instabilities. Because of the anisotro-
pic distribution function with electron thermal flux, electromag-
netic fields thus generated reduce the electron thermal flux.

From the obtained relation between the temperature gradient

and thermal flux

_ 3T
Q=" Kegg 0% (63)



where Keff= nT/mveff, one can simply estimate the anomalous heat-

flux reduction. Denoting 3/9x by 1/L and k by wp/c, we have

Q = —nEVTn (64)

where n is the reduction of the thermal flux from its free stream-
ing value, Vi and €, respectively, denote the averaged thermal
velocity and thermal energy.

1) For mode 1, we obtain

N~ e/l (lSﬂ)l/zmwch( %](SBklz/Mrmncz) ] ~ 0.008, (65)
assuming e= 1 kev, n= lozzcm—B, L= 100u and ﬁIGBk|2/4ﬂnmc2= 10-4.
2) For mode 2, we obtain

. s\ 1/2 1/2 2 2 2,3/2
n o~ vy /0 (m(2m) 77 9/12) mw, ¢ L ( ]EI(SBkI /4 mnme “) ]
~0.80 , (66)

with the same parameters as those given for 1).

These value are consistent with the reduction of heat flow
deduced from recent laser-plasma experiments [1]. Our theory with
respect to the reductive rate of thermal flux with time and the
saturated intensity of induced magnetic fields are in good agree-

ment with the results by computer simulation.
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Figure Captions

Fig.l : Energies of induced magnetic fields, (a) at the linear

stage and (b) at the nonlinear stage with initial con-

- I e c _ h _ h _
ditions ; Vg™ 0.04c, va— 0.05c, Vg™ 0.2c, va— 0.25c,
C_ h_
\ 0.03c and e 0.15c.
Fig.2 : (a) Thermal and total energies versus the time and (b)

energy flux versus the time with the same conditions

as those in Fig.l.

Fig.3 : Energies of induced magnetic fields, (a) at the linear

stage and (b) at the nonlinear stage with initial con-

c C h h c

ditions ; VTX= va= 0.05c, VTX= va= 0.25c, vd= 0.04c
h_
and Vo= 0.2c.
Fig.4 : (a) Thermal and total energies versus the time and (b)

energy flux versus the time with the same conditions

as those in Fig.3.
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