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Abstract
We consider the mechanism of the void lattice formation
as a spinodal decomposition of vacancies. In the linear region
of the spinodal decomposition, the void lattice constant is
determined by estimating the periodicity growing in the spinodal
decomposition. We assume that the void radius in the void
lattice should be determined from the static stability according

to Bullough and Stoneham et al..



§1. Introduction

In 1970 Evansl? discovered that sﬁpe;latticeS'of voids
are formed under a certain condition in a metal irradiated by

neutrons or heavy ions. Such a superlattice has been observed

-in various sorts of metallic crystals, including Moz)'3), Taz),
Ngz)’4), WS), Nis), and AZ7), and also in certain alloys (eg;

. 8) : . 2)

TZM™', and M°0.95 Tlo.osv, .

A superlattice of voids has been found to be formed only
under conditions of heavy radiafion'damage.(:>l dpa.) near the
threshold temperature of void formation ~0.3T , where T, is the
melting temperature of the metal. The void superlattice has
the same lattice structuré as the host lattice, and the void
lattice axes are also parallel to those of the host. For
example in Mo. Ta, Nb, and W the void lattice forms a bcc array
~and in _Ni and Af it fomms a fcc array.

The distance between neighbouring voids in a lattice (i.e.
void lattice constant) ranges from 2002 to 800£, depending on
the radiation conditions. Void sizes also have a wide range
between 40 and 2503. The ratio of the void lattice constant
to the void size falls in the range between 5 énd 15.

A void superlattice usually has some defects as ité host
crystal does. For example, vacant sites, dislocations, varia-
tions of void size, void clusters consisting of several smaller

voids on one site,. and so on have been found.



Stability of the void lattice is élso a characteristic
feature. Once a void lattice is formed, coarsening of the
void does not take place even in the annealing temperature .
(q,llOOOC in case of MQ), and no growth of the void size occurs
with further radiation. It is very différent from the case
of isolated Qoids,zin which both the coarsening and the growth
easily occur at the annealing temperature;

There is no evidence of voids moving in tﬂe process of
the void lattice formation. Aside from the void lattice the

1t

ordering of voids into rows iS observed in some cases.
seems to be a "germ" of a void léttice.

So far there have been some theoretical treatments about
the void lattice. Especially about the static stability of
a void lattice, the elastic energy was calculated in various
ways. These are reviewed briefly in the following.

0)

i
lalen and Bullough .

»

The first calculation is due to

-

Assuming that voids already formed a lattice, they calculated
the elastic energy as a function of a parameter L/R (R: the
void size, L: the void lattice constant). They assumed an
appropriate form fof the force field around a void. Thus,
using the anisotropic elastic Green's function they summed up
the elastic fields originated from other voids. In this
calculation they showed that the elastic anergy takes a minimum

1)

value at a certain value of L/R. Stonehaml has performed

*
similar calculations in a Fourier transformed form. Let Fa(r)
be the a-component of the force field (a = x, Y, 2) arising

*
from a void at the origin. He assumed that F, is given by
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where [Si} are vectbrs wﬂich are suitably'choseh depending on
the shape of the void (provided that |8i| is of the same order
as the void size.) In eq. (1.1) F* is a cons?ant. If {Lj}
is the set of the co-ordinates of: voids including the origin,
a Fourier transformed form of the neé force field at the origin

is expressed as follows
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where the summation j is taken over all voids except the
3
one at the origin. Using the anisotropic Green's functicn, the

elastic energy is given by

E = “‘2%{;2: FC((@)GO(@(@) F;_a('g) ) (1.3)

where N is the number of lattice sites per volume, and the
summations of q is taken within the first Brillouin zone of the
host lattice, and only over the reciprocal lattice points of
the void lattice because of the periodicity of the voids. By
summing up these numerically Stoneham has shown that E takes

a minimum value when L/R ~ 3.

)

Tewary and Bullough12 considered the effects of voids on

the elastic properties of the host lattice. According to them,



E has a minimum Qélue at L/R v 10 which agrees with the experi-
ments.

Since these calculations are based on the Green's function
derived from the continuqm“elastic théory, they can only calcu-
late the energy as a funcﬁion of L/R. Tﬂﬁs the absolute value
of L is not fixed by these static stability analysis. Therefore
it is possible that some other dynamical mechanisms may deter-
mine L. In this paber we show that the spinodal decomposition
of vacancies determines the value of L, and with the value of
L thus obtained, R is determined .so as to satisfy the static
stability condition.

The free energy of the system including vacancies is pres-
ented in 82. 1In §3 the spinodal decomposition of vacancies
is discussed in the linear region, and the growth of periodicity
is discussed. Comparison with experimental conditions and

conclusion are given in §4. & proposal

I

Or a new experiment

is also discussed in §4.



§2, Free Energy

A crystal lattice under heavy radiation damage contains
a great numbér of:mxmfﬁaﬁiom; Though there are various sort;
of reactions and interactions betWeeﬂ various kinds of imper-
fections, we-considér here only vacancies; In order to describe
an irradiated solid crysEal which includes vacancies, we start

from the following free energy pér atom.
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where N and No are the numbers of the lattice sites and the
atoms per unit volume respectively, and c(x) is the vacancy
concentration. Note that N is egqual to (l-c(x))N. The
formation energy of a vacancy is e, and U(r) 1is the interaction
energy for a vacancy palr separated at the distance x. Lattice
site vectors is repgesented by the set of {Ri}. The vibrational

free energy fvib will be discussed later. Formally we take

“=

a concentration expansion of £ ., as
vib
r (0) py o p e
\T‘/LZ-(C'(?)) = \}C;i&- T v?&—("(m) - j‘:/f& ) + - (2.2)

The vacancy-vacancy interaction in metal consists of the

electronic part and the elastic part. If two vacancies are



at a nearest neighbour lattice sites, the electronic part

dominates over the elastic partl3). However the electronic

part decreases exponentially with increasing distance of sepa-
ration. To estimate the elastic partl4?'15) we must solve the
prOblemAconsistently witﬁlthe electronic states. Even if the
effect of the.condqctionuelectrons is taken into account in

a simplified form of the interatomic potential (for example,

the Morse potential), we must evaluate relaxation of many atoms
around a vacancy in the case of the large separation of two

vVacancies. But in general the elastic part decreases more

-2 14),15)

quickly than r Therefore we may take into account

only the nearest neighbour site interaction. Be

4

ause two

Fi
{
Q

vacancies placed at the nearest neighbour lattice sites are

nothing but a divacancy, we have only to know the binding
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the binding energy of a divacancy for metals and some experi-
have also been done. They are generally about 0.1 ~
0.3 eV for many sorts of metals (see Table I). For Mo or Np

etc. it might be a little more than 0.3 eV because of the

large cohesive energy. The vacancy formation energy € is about

o
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oble metals and A%, and is about 2 ~ 3 eV for
bece transition metals (Nb, Mo, and W) (see Table II).
When the concentration of vacancies is weakly nonuniform,

we take the cgradient expansion of the concentration as

Cr+ Ry = ¢cir)y + R.-VCur) + %(Q;-V)ZC(H“)+ ...} (2.3)



and write eq. ( 2.1) as
Flco] = gcam yccwfw—é(a—E)afcwﬂgfc<m)
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where we set a = |Ri[ (only the nearest neighbour lattice site

interaction is taken into account.



§3. Void Lattice Formation Process

The evolution of a system including vacancies is described

by

2C

- DVenmii-emiy 2+ 6 (3.1)

oC(ir)

where D is the diffusion constant of a vacancy, and g is the in-
flux of vacancies from outside the-system. A derivation of
eq. (3.1) is given in Appendix. The directions of the growth
of the inhomogeneity is parallel to the axes of the host crystal
because of the existence of the anisotropic elastic energy and
the growth in each direction of the host lattice axes is independ-
ent of the ones in other directions. From now on we‘will analyze
the growth of c(r) in a particular direction thus reducing the
problem to a cne-dimensionzal cne.

We expand c(X) arcund the mean concentration Cq (e.qg.

c(x)= oty ({x) ). If we assume that l>>co>y, eq. (3.1) is

transformed into

ooty
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In eq. ( 3.2) only the lowest terms in <y and y are retained,
and the gradient expansion is retained up to the fourth order.

Taking the Fourier transformation of eq. (3.2), we obtain <

2__3%3%2 R T)- 7(,}*’ X(mtﬂ (3.3)

If we define to as

Cs e
1 (3.4)
AGY D ) }L.k’ D

0
the growth of y(k) occurs after the time t,- For k2>u_l the
growth of y never occurs.

Let us denote by Yo the initial deviation of the concentration

from the uniform one, which is caused by the thermal fluctuation

in the system. Then we obtain
. = 3
. (e, DA (o - N |
Yty =hexp| |t (GL-GIempotR | £, (3.9)
Tl 7

The mode which gives the largest value of Y is given by

{1 — ————_a_m.) (3.6)

Thus the maximum value of y(k) among all modes is given by

79,4@3& 6 1
X(kww f) X‘g){? ), kmw ({_‘2 2 })—‘/ z >} (3.7)



We show kmax dependence of Y(kmax) in Fig.1l. 1In drawing
(2)

this figure, it is necessary to fix the value of fvib‘

17)

Although
(2)

vib’

it is very difficult to do it precisely in a reliable way for-

lek T is considered to be
vib "B

there have been some attempts to determine the value of f

any metal. But usually the value of f

of the same order of € Or,XU(Ri) at the temperature under
i .
consideration. Therefore within anorder estimation we can set

a+fé§£kBT v —-leV. In Fig.l, some reasonable values for the

experimental conditions on the transition metal (Mo, Nb, and W)

3 1 7 -1

-are assumed; namely D=10 azsec— ’ q=10— sec ~, T=103K, €e=2eV,

U=-0.4eV and the nearest neighbour lattice site number z=8 (for
bece lattic

e).
13),1 . ; . . .
tures )'lG); but we choose D and g rather arbitrarily, because

We take values of g, and U from existing litera-

these values are not well known. Nevertheless, the result turns
out to be quite insensitive to this choice; eg. ( 3.7) and Fig.l

. - : . -1
show that a very sharp growth of y occurs at about ka=10 ~, and

(2)
vib

at the sharp rise of the curve in Fig.1.

we find that the variations of g, D, and f doas not so much

dependence in the exponential part of



§4 . Discussion

5o far we found that the mechanism of the spinodal decompo-
sition of vacancies gives the periodicity A=2m/k which agrees-
with the void lattice constant. Of couyse_the‘above discussion
is limitéd to the lihear fégion (initial fegion_) of the
spinodal decomposition. It is, however, reasonable that the
mode which is determined in the linear region grows even in the
later stages, since the increase of y is very sharp.

Since we don't know the precise éata of g and D and so on
in the experimental conditions, we cannot estimate the explicit
value of the void lattice constant for a particular exéeriment.
We can only say that the void lattiqe constant should have a
tendency to become large for a larger diffusion constant. This
assertion is confirmed by the fact that the void lattice constant

has a 1

+
i

Q
o)

[81]

r value for N; or Al than for Mo, Nb, or W in
experiments; in fact transition metals have smaller diffusion
constants than other metals.

It is necessary to measure the value of g and D in an
experiment simultaneously as well as cther properties of the
void lattice. Then we shall be able to discuss the details and

the guantitative propriety of egq. (1 3.7).



Appendix

A derivation of eq. ( 3.1) is given in this Appendix.

~

The starting point is the kinetic Ising model, which is used

by Saitols).

.

We consider a binary alloy consisting of two components
A and B. Of coursé. in the case of the system including
vacancies, we may regard that thé componant A is the vacancy
and the component B is the atom. ‘We‘divide the system into
small cubic cells of a size 2 in the atomic distance unit.
Note“that one cell contains 23 atoms. We assume that,the size
of a cell is large enough to define the concentrationAof a.
cell, and is small enough to be in-a uniform density. If
we define the concentration of A in the u-th cell as n_ (0 <

U

nu < 1), we can give the free energy as a function of the

local concentration n, - This means

—

e : F—(’ﬁ'l:n:? - )71}“(: T ?Z'N> .

If the concentrations of cells are given bv n

*t°, n -»+ at first, the transition probability of an exchange

Kl

between a B atom in the v-th cell and an A atom in the x-th

cell is assumed *c be

W = 7= 72) 2x P [{ECG0, 7 ,) (7 ‘!.5;';7”'«-5)}2/}%& (a.1)

Then thes probability distributicn P{Iin }) for the configuration

U
of the set of {n } obeys
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)
where T is a rate constant of an exchange, and <vk> denotes

all the combinations of neighbouring cells. We assume that an
exchange takes place only at the boﬁndary surface of two
neighbouring“cells (this surface area is 22). We determine the
free enexgy so as to satisfy the detailed balance.‘ This is

expressed as

P’({n,;}) = 1:({72,;}) + les’qz}gﬂ,uﬁog@u— Ny +(l~h‘.;)&,z(f—n/,)
}.1

(A.3) |

——-(l-—n/u.)}

Using eq.(2.A.3) we can t;ansform eq. (2.A.2) into

g5 [ B
{erp[[Ftr.me) - Fl s, 7@} T | Pt 7

P~ P e ) st )
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The Kramers—Moyal-expmSion is expressed as

ex]o[ { F(y,ne) — F(n,+ aa Ny aﬂ}/’g}qﬂ’]

——

b _ 3
= 1% GobrlE ) F 7 20 mmeron o ©
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(A.5)
With eq. (2.A.5), eqg.(2.A.4) is modified to

JPAnY) = _ .5
2t 270%,0 ReT”

3o
e~ 5me)F§ P }

ARG ) e B2 P e

where only the terms up to the first order of (nv—nK) are retained.

Thus we obtain a Fokker-Planck equation. If we assume that
the fluctuation is small, we can consider only the first term

in the right hand side of eq.(A.G). Thus we obtain

oPUmut) ' 5 38 {(2)’1,,(/ M)+ (7 Yo YN 1))

—
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If we multiply edq.(2.A.8) by n . and integrate by parts, we obtain

N A Ty P e _
B g Bl )

(A.8)
where ¢ denotés a co-ordinate of the nearest neighbour cell.
. . . 3 3
With the gradient expansions of (nu nu+6) and (Bnu anu+5) '
eq- (A.8) is_transformed into
a2 = — nu(l—1u) ) Y= %
s 2L T}I?,BT V ( M /”' >V9 ,u}—‘ P . »(A.9)

2n ensemble avarage of & variable X is denoted by <X> =
{nz } P({ni})X({ni}). If we neglect the fluctuation <x%> - <X>2,
i .
and use the conservation law
7 ‘ .1
[Z_{% /UP | | (A.10)

we obtain from eg. (A.9)

a<:3m> - T!QTV{M’O ’»M’O) V<9)1 1 (A.11)

This is equivalent to eq. 3.1).

- 16 -
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Figure caption

Fig. 1. The growth of modes. The curve represents the growth
of the concentration inhomogeneity as a function of

the largest groWing mode. Time is a parameter.
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Table I

The binding energy of a divacancy

Metal Binding energy RemaFk Referenqe
Au _ <0:16 e&ﬁ Experiment - a)
Ag 0.24 ev Experiment . = a)
Cu 0.12 ev 'E;periment "a)
Ni 0.28 ev Experiment b)
Cu v 0.29 ev ébéory 13)
Ag L 0.33 ev Theory 13)
Au 0.28 ev Thedry 13)
Ni 0.470.5 eV Theory i3)

a) H.Mehrer and A.Seeger: Phys. Stat. Solidi 39(1970)647.
b) A.seeger, G.schottky and D.Schumacher: Phys. Stat. Solidi 11

(1965) 363.

*)
Table IT
Metal Formation Metal Formation
Enerqgy (ev) . Energy (eV)
Au 0.87 Nb 2.0
Ag 0.99 Mo 2.3
Cu 1.03 W 3.3

Al 0.73

*) Ref.1l6 p.27



