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Abstract

A new eigenmode analysis is established in plasma with
arbitrary density profile. Finite Larmor effect is taken
into account even if kXp > 1. Eigenfrequencies are determined

through a compact "quantization condition".



The stability criterion of inhomogeneous plasma is given
by the eigenmode analysis%_3 Usual treatments of drift wave in
collisionless Vlasov plasmas are based on the expression of

unknown function VY(x') about x'=x, i.e.,

2
Y(x') = ¥Y(x) + (x'-x) Q_X + l(xl__x)Z &3_2 4 eee (1)
dx 2 2
dx
where Y(x) is a potentiall or a component of electromagnetic

field4 of the eigenmode and x' is the x-component of unperturbed
orbit. The expression (1) is applicable only when the Larmor
radius p is small compared to the "wave length" in x-direction
(i.e.; kp < 1 where k ~ ¥'(x)/¥(x)).

The effect of finite Larmor radius can be taken

into account exactly if V¥(x) is expanded in the Fourier integral

¥ (x) = f% J v (k) XX gk . (2)

The Fourier component V¥ (k) is determined by an integral

equation5’6

F(k)¥(k) = J K(k, k")¥(k")dk' . (3)

The expression (3) is also introduced from the general relation

for electric field in an inhomogeneous medium

¥(x) = [ D(x, x")¥(x')dx' . (4)
If we transform (4) into k-space, we can immediatly obtain the
relation (3). 1In this case, F(k)=1 and K(k, k') is given by

K(k, k') = f% f D(x, x')e TKXTIK'XT gyax' . (5)




Analytical treatments of Eg. ( 3) are done by several authors
usipg‘alexpansion Qf the kernel of Eq.(3)?'8 They investigated
the eigenmode profile in x-space. But their methods are not
convenient and not satisfactory when the wavelength is smaller
than the inhomogeneity scale length. Another treatment is given
by Krall and Rosenbluth? They derived first an approximate
dispersion relation based on the assumption W(x)=constant._

Next they examined the validity of this approximation through

the integral equation (3). They introduced a function g (k)

defined by
k
¥Y(k ) = exp[-i f g(k')dk'] (6)
and obtained approximate form of g(k). They showed, however,

only the validity of their approximate dispersion relation
based on V¥ (x)=constant.

The present new treatment is also based on an analysis
of Eq.(3) in terms of fhe function g (k) defined by Eq. (6).
Physical meaning of the function g(k) is made clear from the

potential profile in x-space Y(x),

¥(x) = f ¥ (k) e TKX dk . (7)

If we substitute the expression (6) into Eg. (7) and evaluate

the integration by the steepest descent method, we have

k
1 27 eikX-iJ g(k')dk' .

R T = o) 8)

where k is the saddle point of integrand of Eq. (7) and determined

by



x - g(k) =0 . (9)

If we change the integration veriable in Eg. (8) from k' to X

using the relation (9) and perform once a partial integration,

we have a WKB solution10
"I a if¥
¥(x) - ¢§%_ Ei:) ot k(x)dx (10)
where function k(x) is determined by Eg. (9). Then the value of

g (k) indicates a position x and k is a wave number of WKB
solution at this point Xx.

The function g(k) is determined by Eg. (3) and Eg. (6), i.e.,

kl
F(k) = J K(k,k') exp[-1i f g(k")dk"ldk' , (11)
k

The integral equation (3) can be regarded as a wave coupling
equation, that is, the wave with wave number k is generated from
a coupling between a wave with k' and the spatial plasma
inhomogeneity, the wave number of which is of the order of L_1
(L is the spatial scale length of plasma inhomogeneity). Then

the range of k' which gives main contributions in the integration

of Eq.(ll), is given by
k' - k| ¢ L . (12)

The function g(k") (which is of the order of L) can be expanded

about k such as

g(k") = g(k) + g' (k) (k"-k) + 0(L- (kL) %) . (13)

To obtain an approximate solution of Eqg. (11), we expand g(k) as

follows



g(k) = go(k) + gy (k) + 0(L(kL) %) , (14)

If we substitute Egs. (13) and (14) into Eg. (11), we have

H(k, g,) = f Kk, k')e TR'"KIgo(K) gui_pamo (15
_ i MW dH , -1
gy (k) = 23 g (5'5—0-) gos' (k) (16)
from each order of (kL)-l
. 9H 3%H .
The functions and =—5 in Eq. (16) are defined by
99y 99 ¢
—. '—-
a%i = —i[ (k'-k)K (k,k')e Tk =KIgo (k) 40 (17)
2; - v
2 i = - j (k'-k) 2K (k,k")e 1 (k'"K)go (k) 4., (18)
09%

and these definitions are coincident with the derivatives of
the function H(k, g,) (15). The equation (15) determines the
function g, (k) and Eq. (16) determines the first order correction
term g; (k).

The wave propagation characteristics are determined by
the structure of the function g(k). A spatially localized
mode is expressed by a loop of g=g(k) as shown in Fig.l if
there are no external signal sources. The value Xy q and xt2
correspond to the x-coordinates of turning points. The

localized mode is constructed by the superposition of plane

waves with wave number k, the range of which is given by

k <k<kt

tl 2



Next we examine the "quantization condition” which
determines the eigenfrequency w. If a localized solution
is present, the solution g, (k) becomes multivalued as shown in
Fig.l. 1In the neighbourhood of turning point kt in k-space

(kt=ktl or kt2 in Fig.l), we can expand H(k, gp) such as

2
HiK, go) = O (k-k) + 3 =) (gemg)? (19)
k=k, 890" k=k,

where we used the relation

BZHO) -0
k=kt

Equation (19) gives the function gy (k) as

_ 3H 3%H 1/2 . o \1/2
9o (k) = g i[—(gz)k:kt/(ggzﬁkzkt ] (k-k,) .
(20)

The function g(k) becomes a single valued function if we make
branch cuts in k-space as shown in Fig.2 (where we assumed that
turning points ktl and kt2 are complex in general). A general

asymptotic solution of Eq. (3) is. expressed by

y (k) = Ale_lfclgdk + Aze_lfczgdk (21)
where Al and A2 are arbitrary constants. If k is in the range of
"k < ktl" or "k > kt2 " , the solution (21) is composed of

functions which are increasing or decreasing with k. To obtain
a localized solution in x-space, the decreasing solution in the

region of "k < kt1" must be selfconsistently connected with the

decreasing solution in the range of "k > kt2 Using the

. .11
same argument as usual connection formula for wave eugation —,



we obtain a "quantization condition”

f glk)dk = 2n 7 (n=0, *1, *2, =*---- ) (22)
T
where the integration path T' is illustrated in Fig.3. Substituting
Egs. (14), (16) and (19) into Eq. (22), the "quantization condition"
reduces tov
f go(k)dk = 2(n + %)w (n =0, 1, £ 2, *=") .
o (23)
The new treatment of eigenmode analysis is summarized as
follows:
1. Calculate the kernel of integral Equation (3) from Vlasov
equation.
2. Carry out inverse Fourier transformation of the kernel as
shown in Eq. (15), and obtain the function H(k, g,).
3. Calculate the function g, (k) from H(k, g,)=0.
4. Determine the eigenfrequency w from the "quantization
condition" (23).

If we apply the present method to a wave equation
Y (x) + vx) w(x) =0 ’ (24)
the quantization condition (23) reduces to the well known result

%2 1

f AT dx=(m+ 31 (=01, =)
*1
where X and x, are the turning points defined by V(x) = 0.

It will be worthwhile to represent H(k, g,) in the following

form



-ik (x-go (k))

H(k, gp) = I D(x, gg(k))e dx - 1

where we have used Egs. (5) and (15).

Applications of the present method will be discussed
elsewhere.

The present method is also applicable to some wave
propagation problems in an inhomogeneous plasma such as the
reflection, the transmission of waves and the linear mode
- conversion.
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expreésion (6) in reference (8). The authors appreciate to
Professor T. Taniuti and Professor K. Nishikawa for valuable
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Figure Captions
Fig.l Schematic plot of g=g(k) for spatially localized mode

Fig.2 Branch cuts in k-space and two integration pathes Cl

and C2 giving two independent solutions of Y(k),
————— : path in above Riemann surface

— — — : path in under Riemann surface

Fig. 3 Contour of integration for the "quantization condition"
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