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Abstract

We present a comprehensive theory of the electro-
static low frequency instabilities of a collisionless plasma
in a cylindrical tokamak. The plasma carries a longitudinal
current which produces the poloidal magnetic field and the
magnetic shear. The effects of inhomogeneities ( density,
electron and ion temperature gradients ), plasma current,
radial electric field and the magnetic shear are examined.
The instabilities are found to be excited owing to the plasma
current, ion temperature gradient and radial electric field,
though the magnetic shear has a prominent stabilization
powef. The of f+resonant instability in the absence of the

magnetic shear is also discussed.



§I Introduction

Drift instabilities have been subject to extensive in-
vestigations concerning to the anomalous loss of magnetically
confined plasmas}'z) Driving mechanisms of drift instabilities
which grow by extracting energy from the mean plasma flow via
electrons have been found in various parameter regimes3_5).

To understand the anomalous transport processes in confined
plasmas, we have to take hold of the behavior of these
instabilities in a considered configuration, totally and
continuously in parameter spaces. Then we are able to plan
devices and search for optimum condition in experiments.

Tt is one of our purposes of this paper to understand
kinds of electro-static (E-S) drift wave fluctuation in a
sheared magnetic field. Among various kinds of drift modes,
some are completely stabilized by the strong shear and the
other are a little stabilized because of their nature of the
mode structure ( eigen value and eigen function etc. Y; i.e.,
the manner of recieving the shear effect is different.

In addition, in tokamaks the magnetic shear is generated by

the toroidal current which becomes the source of the current
driven mode. Therefore it is important to arrange the complex
situation consistently in the parameter regimes.

In a magnetic field with shear, the parallel wave number
(E-E/B ) becomes a function of the distance in the direction
of the density gradient &. As a result, the magnetic shear
results in an "effective potential" in the differential

equation that governs the x-profile of perturbations



Rukhadze and Silin have tabulated many kinds of drift wave
instabilities and the critical shear parameters for stabilitgz
However, the method of geometrical optics they have used is
not proper to this problem because of the rapid spatial
change of the "potential" in the differential equation.
Employing Weber type solutions, Pearlstein and Berk (PB) have
formulated and solved the differential equation?)demonstrating
the existence of physically meaningful eigen function.
However they have treated the deviation of the electron
response from the Boltzmann distribution as a perturbation,
and have evaluated it without consistent ordering. Taking
the full non-Boltzmann part of the electron response into
account, recent theoretical development on the universal
mode has clarified that the universal mode is stabilized with
a weak magnetic shear in a slab gemnetry?'S) In the previous workg),
we have made clear the discrepancy between these works and the PB theory
by employing a self-consistent ordering in evaluation of the
non-Boltzmann part of the electron response which determines
the growth rate. It has also been shown that the current-driven (CD) drift
mode becomes unstable when the magnetic shear is fairly weak?)
In this article_we investigate the drift wave insta-
bilities of the plasma column in é héiical magnetic field.
According to the finite size of plasma radius, we have three
typical cases of the shear parameter; Ak, /w) > l/vi, l/vi
>> Ak, /w) >> l/ve and l/ve >> A(k, /w), where A(A) shows
(Amax _Amin ) over the plasma column. In the first case,
which is for the ordinary tokamak discharge, the mode

structures are approximated by those in a slab case.



In the second case, the radial drift mode structure is not
out-going type, and in the last case we have the off-resonant
instability which is driven by inhomogeneities. The 1st
case is mainly discussed in this article. Employing ortho —

92)

normal function series;’ we rewrite the differential equation
into a matrix formulation. Then we introduce a smallness
parameter to truncate this matrix to find the eigen mode
structure. We examine the stabilizing efficiency of the
magnetic shear to various drift modes in order to seek the
dominant instability out from the complex situation where
driving mechanisms of instabilities are co-existing. This
investigation alloWs us to know the optimum condition in
parameter spaces for plasma confinement. For instance,
the optimum plasma density may be determined through the
competition between the current-driven universal mode and
the collisional,mode}o)
The structure of this paper is as follows. In §2 we
discuss the Vlasov equilibrium of cylindrical plasma by
use of the tokamak ordering. In §3 we derive the differ-
encial eigen-equation, and present the method of ortho-
normal function series in §4 . We apply this principle to
various kinds of modes and obtain the growth rate, the eigen
function and the threshold shear for stability. 1In the

Appendix we briefly discuss the case where magnetic shear

is extremely weak.



§ 2 Equilibrium Theory

In this section, we derive the self-consistent Vlasov
equilibrium of an inhomogeneous current-carrying plasma
column. The equilibrium magnetic configuration is illustrated
in Fig.1. A plasma column is immersed in a strong longi-
tudinal magnetic field BZo and the longitudinal current
produces the poloidal magnetic field. The poloidal and longi-
tudinal components form the helical magnetic field with a
shear. We introduce the cylindrical coordinates ( r, 6, z)
with the z axis coinciding the magnetic axis. We assume that‘
1) the equilibrium has longitudinal and cylindrical symmetry
( 3/3z = 3/30 = 0 ), 2) the azimuthal symmetry of the tokamaks
is replaced by the longitudinal periodicity 2mR, 3) the plasma
temperature is high enough that the plasma is considered to
be collisionless, 4) the longitudinal current is carried by
electrons, 5) the plasma is low B, i.e., B < Me/Mi ( electron
to ion mass ratio ), and 6) the ion gyroradius is much smaller
than the scale length of inhomogenieties.

The conservation quantities of a plasma particle are
the total energy H, and the two components of canonical

momentum P6 and Pz'

H= +Mu" + ey ' (1)

P. = r[MjU'e +-}_~€jAe(r)], (2D



|
Po = Mjupy + ¢ €5 A5(r) (3)

¢ ’

where ¥(r) is the static potential, j denotes the species
of particles and A is the vector potential. Because the

plasma is low B, Ae(r) can be approximately given by

Ae(r) = ’Zl"Bior (Q)

with the aid of the tokamak ordering, ( Be/BZO)2=rz/q2R2 << 1,

= =0
where B_, Bz(r ). Thus

= 2r Vg ’
with Qj = eJ ZO/M .Cc is the cyclotron frequency. Using

two constants of motion, Egs.(2) and (3), we have the other
constant of motion
P = Mi(V 39 (3"
V74 bt J(Z+——U-9) . 3
20

We also have the constant of motion

l g I 5. L
H-e3B(fzrvpra; +15) = MV 4+ o € Er Uy t1)
expanding ¥ with respect to rve/Qj .
An equilibrium distribution function fo is given in terms of
constants of motion. The three constants of motion, Egs.(l')
(2') and (3') are used to form the distribution having the

desired density, temperature and velocity inhomogeneities as

= Mooy } - (rl2rVe/) _ (reerip/@) (U +2eME vbin)
’ (2mug Y2 i 21 L3 2vg;
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Ut 2eMEr UG /@ - 2U (Vs +7; By /Bge) +W° J (14 Arbertin) g

2&7-,‘-, L'-'r ] ’

with (5)

_ r 2rUp
W= U il St o )/ﬂ_; | )

where the notation j is supressed. The quantities ny, u

0
and Vipg are the particle density, the flow velocity and the

'thermal speed at r = 0. We take u = 0 for ions. The

fundamental three moments are

2
N = Nir) = ngexp (—‘;_{E‘) ' e
2
- _ _ Uz r + Zl" L)
T = ¥ = - A (L}+r‘)}6
- S E 6 | (7)
Beo "
(i-r/uw) Be 3
+
°(l+r‘/!f,>’z 8209& ’
and
Ter) To .
T =Tw) = 73 /Ly *
Here'we have assumed  ( p;/Ly VF ( Bg/B, )?, and ( ru/ VL, )

. 2 _ .

<< 1 with Py = vi/ni and ‘6 = Tj(r)/Mj. The terms in the
right hand side of Eq.(7) stand for the diamagnetic flow,

B x B flow and the force free current. Egs. (6)-(8) satisfy

the equilibrium equation



-

l
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The poloidal magnetic field is derived from the force free
current through the maxwell's equation Vv x B = 4nJ/c as
¥

_ 4Te
Be = - &onV;r‘dr : (10)

Thus the equation (5) is the self-consistent Vlasov equi-
librium solution of the inhomogeneous current-carrying plasma
column in the limit of the tokamak ordering and low B approx-
imation. Figure 2 illustrates the typical example of the
radial distributioﬁ of jz, By and g(r) ( g: the safety
factor Bzor/BeR ).

For the cylindrical plasma column the shear length Ls

is defined by

i kB
. _ 4 1 k-8B \
Sl Bar ol G bl (11>
6
where k = ( 0, m/r, n/R), (m, n=1, 2, 3 «+-- ) and 1/Ls
is evaluated by
- lr d BeR )‘
Ls R dr B, ¥
The density gradient scale, « = -Vn/n is given by + r/an.
The temperature gradient scale is written Kp = -VT/T.
W 1 the notation n. = k../K..
e also use e i nJ TJ/ j



§3 Linearized Theory

Since we consider the low B plasma, we introduce an
e
electrostatic potential perturbation (%, t). From the
periodicity we consider a Fourier component @(Z, t) =
i(mpg + g2/R - wt)
¢m2(r)e .
The mode is labeled by poloidal and longitudinal mode numbers
m and %. On the other hand, the potential perturbation is
localized in the neighbourhood of the mode-rational surface
r, where q(rs) = m/% holds. Thus, in the following analysis
we discriminate the mode by m and ry and supress the suffixes
m and r_.
s
We take the linearized Vlasov equation. The perturbed

~ 2 -
distribution funciton f (x, v, t) can be written in terms of

the characteristic integral as
t ’ ’ >/ ., 37 2,
Jalt v'R(x,t). v, }otx, U (12)

-

Fe v = o
My

where (%', ;', t') is the particle trajectry variables and

V' and Vv' are the derivative with respect to ;' and ?; res-
pectively. Using the constants: of motion and the relation
de (%', t')/dt' = 3¢/3¢t" +‘V5V'¢, we find the Fourier coeffi-
T, ) eifme + 2Z/R - wt)

cient of f, £ as

£ l'+(rl+‘2rUB)/L?} ¢(r)

f009)
° T, Su

: r*+2rvs /n - 1 Ut 2 ow)
t 4 (1 ——==& w¢H+L-w.+w-_——h - —_—t

J
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—m(|+—r—i4—'f9—/—@-)we - kou | Tt (13)

C1
2 2 2 e
where wg, = - ch/eBZOLn r Wpy = LPWg/Ly’ s ky = kBE/B,,,
- - 2 "
ij cm(Er + pj Er /2)/rBZO and

Iin = S a1 <P(r')Q><F [—;w‘c-f am(e-0)+ L (Z-B)R] (14

- 0

In order to evaluate I(r), we introduce new variables of

the particle velocity ( v, , vV, P ) to obtain the particle

trajectry with the help of the tokamak ordering

r'-r = U
L

[sincT-p) tsinp ]

CEr Be
— Uy T (15
B%o Bz-o ! ’

r(s'-6) = =[eo(Re-p)-cosp] -

’

2-2= ;T

where we have assumed that the equilibrium quantity varies much
slower than the ion gyroradius. We also assume that the
radial variation of the potential fluctuation ¢ is slow
compared with the particle gyroradius. We expand’¢ into a

Taylor series around the rational surface, and retain terms up to the 2nd
) ,
order in pz—a;r as

d(r'y = by + (r'-r) diry + zl(r’—r)1¢"(r)+--- (16)

Substituting Egs. (15) and (16) into Eq. (14), we obtain

in the low frequency limit ( |w - k,v, - muhl < g

- 10 -



. Vo
L = o SERP) oyl [J( %) (4 +8sip §E)

ar
W= Mmwe - b, U7,

tlg s LERE) + 3,28 ) 4%, } tr

where wg = - cErm/rBzo is the doppler shift due to the
- -
E x B drift. Performing the integration of f over d’v = dp

dv,v,dv, we get the density perturbations of electrons and -

ions as,
- " .
Ne _ ed | + Ww- mWge + 7T Wrg —mwg —k, U gc,z(ge)
Ne Te W= mwg —p, u
mw
S (R0} - S )
u
— R 5. Z(30) . us)
‘Q’Lu(w”mwe"b“)
and
ind m
I T ey
n; Te W - Muwg W=t < '

Wy (bA) j—b/\' d'e
+(»—mw.- g'Z(%) kz ar?
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Wt mud; = T W MWy
+ + C . —T
| W -~ muwg 2CEIN+ R 5;1{‘*5;2(5;’} A
™ Wy ,
t —T=£760bA" | ® (1) : (19>
where £, = (w,~ k,u - me)//EIkHIVe, £; = (0 - me)//ilg”lvi,

- 2 _ -b v ap .
b = (mvTi/rQi) , A(b) Io(b)e , A oA/ 3b, Io(b) is the
Oth order modified Bessel function, and Z is the plasma dis-
persion function defined by
00 -t
Z(g) -—_l_x o\;t—___g_.___
w), t-§

For a plasma composed of electrons and singly charged ions,
the Poisson equation gives the differencial dispersion
equation. Neglecting k?A; compared to unity ( Ap* Debye

length ) we have

’ 'l/:)""mu)c\;“mw]"’, MNIL 2 My (b/\__,_)/:!
—AI[ — 52 + = 5;{“5;2‘5:‘} +‘-‘§—§;Z(§;) N

@
x Pl ¢
dr?
~ m
w - MwWde + 5 Wre— k.U _ mWre .2
N a——n LU0 ~ Fote |15 2]

mu, mUW,
- —— 1+ 5,700} - Z1%.)
QL b{ s dl} } L (w-kaW) E‘ be

- 12 -



W+ mwa - 2

Wy ,
T+ = =T TGO + 'f-‘:—dhgj{ 1+5Z(0] A

MWy, ’ =
+ = 3.2 bA j ¢ 0 (200
where 1 = Te/Ti' w=w - MW - The terms proportional to

uO/Lu2 are due to the velocity shear of electrons. Since
the wave is localized in the vicinity of the rational

- -
surface where R*B = 0 (r = rs), we expand k, as ky =

2m rs(r - rs)/qRLPZ, and solve Eg. (20) in the drift limit

w >> |k,lvi‘ We expand Z(g) in Eq. (20) with respect to

1/gi and obtain the basic equation in dimensionless
form as
d'¢ ~: =
T + [x+|u§‘+o'(§)J¢ =0 (212
where
A 2 ’ 2 o
§= Cr-rd/p P = =ARY, Z= (Twrw) Ay A
' . / ,’7 2 z"\.z
>\ = /\(_,—(I+T)w/\ f"'z.": A(,:‘*U*T/\) k(/—.' P.
(Tw+w,)/\’+w*.r(¥/\')’ ’ Z’ L.zs Qo

!

,[Tw/\’-r (14 L%,&)f(m:)w-g}]—w:‘iﬁ:‘ '
o W

~
~
|>

(W)

£
O = . w (r‘.r ) >y = - A = -
= Wgp + 9013 AR W s W= W ler

- 13 -



and.

~ 7 ~/ m .
T = - _WA k)_g—mwde+3_-‘~)7¢-k~u§z( )
(=4 ~ e f(
L‘ w - h"M
m A
T m U, NE
~ = ) 52 ~—{'+—-——— 2 )f
We knﬂ e 3 ?c} &L:tkll u?',-—k.,u §¢ gc
where w, = Thwg; and wyqp= TMwg; . We also introduce the parameter
Ce as G)/k,,ve = ge/g. The electron velocity shear terms in ¢ are

dropped in the following analysis because uope/veLu <« 1 holds.
When the wave localization width § is smaller than Ty the co-
efficients A, li%and o are evaluated by the value at r = ry. The
basic equation is very similar to the one obtained in the slab
geometry as is expected. We discuss in the Appendix the case
that &6 is order of the several times of the plasma radius a.

Note that u? can become negative when the ion temperature

gradient is large enough.



§ 4 Stability Analysis

To determine the stability properties of.the current-
driven universal drift mode of the cylindrical plasma column,
we rewrite the differencial equation (21) into a matrix
equation as the case of a slab model. In the following, the
r dependence of b, X and u is neglected in Eqg. (21).

In the first place we obtain the real frequency of the mode.

Neglecting the electron resonance term in Eq. (21) we have

2

[ddg,_+)\+f~‘-l§zlq>=0, (22)

4.~
= ip 1
We use the or:honormal set {¢n(c)|¢n(c) ‘/ - \/ . H,
(lziﬁ c)e-luc /2} on which the boundary conditions that the
wave is out-going and ¢ is regular at ¢ = 0 are imposed?)

Each ¢n statisfies

z ~2 2 . -
d + )\, + { = 0 A\, = 1 (2n+1) (23)
dgl r‘/ n ) n P'

Thus the eigen value is given as
A= )\n (24)

showing that each ¢n is the eigen function of the mode when
the electron response is the Boltzmann distribution, 0=0.

Writing w = wy + iy and linearizing A with respect to Y/ Wy s
wy and Y are given as A(w = wy)= 0 and y = - 2ImA/AY (1+T-TA).

The real frequency is given by

- 15 -



A+ bA0;

w,. = w
¥ 2
0 [+ T - TA (25)
and the imaginary part is found from Eqg. (24) to be
~ B/
J = = (2n+1) = (26)
I AN(1+T-TA)

which represents the convective damping due to the magnetic
shear. The competition between the convective damping and
the excitation by the electron resonance determines the
stability as will be shown below.
It should be noted again that 12 can become negative.
When 112 < 0 holds, the eigen modes become localized type as
-lule?/2 i
¢n « e and all An become real, so that the convective

damping is annihilated. Figure 3 shows the regions where

pu? < 0 holds or w < 0 holds in the case E. = 0. When KT(K
is large enough, u2 < 0 holds and the convective damping
vanishes.

As easily known from Eq. (21), the uniform roﬁation
part of Wgr Wggr only causes the real frequency shift and
has no substantial effect on the stability. On the other
hand, the curvature of the static electric field Er affects
the stability. When E. has the negative curvature, i.e. Er",< 0,
the convective damping of the wave increases,and when Er" >.0,
the convective damping is reduced.

In the presence of the electron resonance, ¢n's couple

and the normal mode ¢(z) can be expressed as

- 16 -



= 7 a.d | (27)

n=o

We first give @ general note on the mode structure ¢(Z).
The inhomogeneity driven part of the electron resonace,
geexp(—gez) X (wy, = w - wyeNgy/2), couples ¢,, Mode and the
even mode is decoupled from the odd mode. On the other hand,
the current driven part couples ¢2m+l with ¢0, which is the
least stable mode in the absence of the electron resonance.
Thus we cannot neglect the mixing of the even and the odd
modes.

Substituting Eq. (27) into Eq. (21),we have

(
\
(>‘ At Ve, Vou , Vo2 ) Qo
TP W SR | Y
° (28)
VZo, Vz. , M- A, t Vazr , a,
\ S I,
where
V,.j = <ifefj> = j@(s)mwj(g)dg /

- 17 -



and < i|j > = éij is the Kronecker delta. The eigen value

equation is given by

i
o

deb |V, . A =X+ Vi, (29>

In the case of the nonelectron-resonance limit, we of course

have A = A_ with {a_} = {¢ }. One way of handling Eq. (29)
n 0 m, n

is the trunctation of the matrix, which gives the hierarchy of

approximation. Another way is the expansion with respect

to some smallness parameter, if any. In case where the

coupling with high n modes are crucial to the stability, the

latter method is appropriate. We are interested in the strong

shear case

M
[ < ——Ys—%s—- <« (30)
Ln Me

and we take

¢ = Jlple. ~ O(/wMermy)

as a smallness parameter and retain up to the order of € 1n €.

Taking all effects by the even components ¢2n+2 and odd

components ¢2n+l (n=20,1, 2,--+-+- ) on the least stable

- 18 -



components ¢0, we have an approximate solution of Eq. (29) as

2
| + £ V;n,zn _ 00 -Vznﬂ,o =0 (32)
neo [X-lansn)ip) e [a-@nenipfla-pl

where
_ (an=-n!! ) /\’(w,;-w— Wi /2 2
Vzn,zn = Tamn D) o7 len/2) (:L"/-;; (33)
Y o ’
1 ’
V— - (zn =1, (_‘ n . Aw u
2,0 /Z;;::;T‘ ) 4 8/ Ve ) (34)

in the lowest order of t. The equation (32) shows the com-
petition between the electron resonance and the shear convec-

tive damping. Equations (32), (33) and (34) are rewritten as

ot A (Og-w-wye/z) ﬁr(tl,,%) N
4p 2’ 3.y e
4 r.{zj*'%P)
a1 Nw u? r(i+2)
f ' o |- b =0 (35)
2 -z L g VAJ[ ﬁr({_+%)] /

which is the dispersion relation to determine the eigen value

A. The normal mode is

V +1,0 + 1
4> = c#o ._Z 2n,0 431" _ Z Vz.n 1, ¢zn (36
A= (4n+t)p T -Wne3) i -

As easily known, the even mode and the odd mode decouples

when u/ve = 0. In the case of u/ve =MNg =Ny = 0, Eq. (35)

- 19 -



is equivalent , in the lowest order of e, to the dispersion
relation obtained in Eq. (25) of the ref. [11]. 1In addition
to it, Eg. (35) enables us to consider the combined effect
of the inhomogeneities, static electric field, and the plasma
current on the stability.

The equation (35) shows instability when the plasma
current is large enough. If we limit ourselves to the case
where n; =ng = 0 and w = w,, Eq. (35) gives the critical shear

e

condition for stability

| T u
0.6 —— — (37)
kLs ? . | + T Ve 7

which agrees with the result in Ref. [12] apart from a numer-
ical factor of order of unity. We solve Eg. (35) for typical
cases and show the growth rate in Egs.4~7. The Figure 4
illustrates y ( normalized to w, ) as a function of b for the
parameters kL = 8, 16 and 32 ( Kre = Kp3 = u/ve = 0). It is
shown that the universal mode is marginally stable when b
exceeds the critical value. The electron tmeperature gradient
is not enough to excite the drift wave even if KTe/K < 0 holds
( Fig.5 ), while the electron current can excite the drift
wave as illustrated in Fig.6. In the presence of the electron
current, the concept of the critical shear is still important.
Fairly long wave length modes have large growth rate. 1In Fig.
the growth rate is shown, in the presence of electron tempera-
ture gradient and electron current, as a function of b for the

shear parameters KLS = 12, 20, 32 and 50. It is shown that

the electron temperature gradient tends to stabilize the mode

- 20 -



but not enough to completely suppress the instability when
the magnetic shear is below the critical value for stability.
We understand the fact that universal mode is stable
as follows. When the magnetic shear is present, the source
term o(z) is localized near the rational surface; this spatial
variation of ¢ causes the coupling of the principal ( n = 0 )
mode with higher 2n modes. Such high n modes carry the free
energy away from the interaction region ( since An « 2n + 1 ).
The convective damping of the mode is effectively enhanced.
Thus, we note the magnetic shear has three effects on drift
instabilities; convective damping, localization of ¢ ( which
naturally reduces growth rate ) and the coupling of the princi-
pal mode with high 2n modes. The stability is determined by
the balance between the convective damping, high 2n coupling
and the inhomogeneity driving source. For the universal mode
and the temperature gradient mode, o « 1/|z| holds for |z]| > Loo
Electron resonance term ¢ in one hand excites the mode, and
in another hand it effectively enhances the convective damping.
The result implies that the inhomogeneity driving source is
insufficient to excite the instability as a whole. For the
current driven mode,‘the instability source term k,u ( = kux/Ls )
is proportional to the shear strengfh. Thus the stability is
determined not directly by the convective damping but by the
localizing effect by the shear. This, we note, leads to that
the instability driving term due to the current is insensitive
to the shear damping and to the coupling with higher 2n + 1
modes, which confirms the validity of the truncation of the

matrix. In fact, the result is satisfactory when we keep only terms up to

- 21 -



Vlo2 H in this approximation we recover the characteristics
of the current driven drift instability except we underestimate
the destabilization contribution of the plasma current.

Tt should be noted that the consistent ordering is the
key concept to judge the stability. If one forgets the con-
sistensy in handling the electron 2 function terms, one may

13)

only retain electron resonance, 'Or one may evaluate electron
resonance by its value at some pointG)( for instance at
turning point ¢ = 1//u ): these procedure merely leads to the

wrong results mispredicting stability or instability.

- 22 -



§ 5 Discussions

In § 3, we derive the differencial eigen equation for
the drift waves in the sheared magnetic field, based on the
equilibrium distribution function obtained in § 2 . The
solution is obtained by use of the orthonormal expansion
method, and the effects of various inhomogeneities on the
stability are examined with the shear convective damping.

The section 4 is devoted to the case where a wave is well
localized around the rational surface. In the low shear limit,
the wave spreads over the column and the eigen value is
determined by the position of edge, i.e. mpi/a. This case is
discussed in the Appendix.

When the ion temperature gradient exists, the growth rate
of the current driven mode increases. The value i becomes small as
ny increases. As u decreases, the convective damping decreases
faster than the wave localization effect does. Therefore the
current destabilizing term remains large in comparison with
other damping terms according to the increase of n, . Moreover, if
ny exceeds U in Fig. 3 ( in regions B and D ), the real
frequency becomes negative and the electron temperature gra-
dient turns to further destabilize ﬁhe instability, and the
ion branch may become unstable. The stability is examined
for the case of u? >0 in §4. A&s n; exceeds the critical
value nc, u? < 0 holds and the wave becomes not out-going
type but localized. Thus shear convective damping is annihi-
lated and low n ( n < KLS ) modes become unstable. ( High

nNnmodes ( n > KL ) are stabilized by the ion Landau damping. )

- 23 =~



This implies that there is an upper bound of the ion temperature
gradient experimentally ( ~ 1.5 ), and that the ion temperature
gradient greater than 1.5 may not be realized.

The inhomogeneity of w, easily destabilizes the drift
waves. When 1/L% = 3%w,/3r?/w, < 0, the wave is localized
and the convective damping by the magnetic shear is reduced and
even annihilated if the inhomogeneity of w, is strong; I <
P KL This condition is occasionally satisfied in the ex-
periments. This explains the abundance of the excited modes
which are usually observed in the experiments}4'15) In fact,
the observed dénsity profile in the toroidal devices are
different from the éaussian distribution and w, is no longer
a constant.

In deriving the basic equation (20), we formulate it as
a 2nd order differencial equation; i.e., we neglect the higher
order derivatives with respect to ¢. The stability of the
universal mode is found by taking the electron resonance com-
pletely. If one completely take the ion response, Eqg. (20)
contains higher order derivatives ( or Eg. (20) turns out to
be -an integral equation ). There remains an open question
whether these higher order derivatives affect the stability
or not.

By use of the mode structure obtained here, we can
estimate the cross field plasma flux and derive the scaling
law of plasma confinement. We discuss the electron par-
ticle and heat fluxes owing to the drift instabilities in the
reference [10].

The "cylindrical tokamak" implies that we neglect the
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toroidal effect of tokamaks. When the temperature becomes

high enough, the trapped particles'appear and the investi-
~gations derived here is incomplete to cover all parameter
regimes of tokamak plasmas. We discuss the nonlocal theory

of the trapped electron drift instability in another paper
[16]. Of course one should not forget the electromagnetic

effect on the drift wave stability for high temperature plasma%?)
Thus further efforts are still required to achieve full
understanding of the low frequency instabilities and the en-

hanced transport of tokamak plasmas.
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Appendix: Extremely Weak Shear Parameter Case

When the plasma current density is flat, g-value has a

weak dependence on r; thus k, can be considered as a constant.

In this case the radial mode sturcture is not localized around

the rational surface, but spreads over the whole column. The
eigen mode structure is determined by the r-dependence of

b = m®/r?, w,+++. This Appendix is devoted to show the
typical characteristics of the drift wave in a shearless
cylinder, not to give extensive parameter survey. Here we

simply consider the case where r dependence is retained only

for b, to show the off-resonant instability. Taking Kpi = 0
we have
[—/\'ﬁ2>z + A+ C] ¢ =0 (A1)
v }rz ’
with A(b) = I (b)e™®, b = m2/r?, and
(w~wx )
+T) + (
¢ = (1 ) ,/fnz,,;th;e) (A2)
W+ wx) (3:)
ﬁ'ka‘v& Z E

Here, C is the eigen value and w is given by Eq. (A2) once
C is obtained. The boundary condition is that ¢ is regular
at r =0 and ¢(a)=0. C: s determined as a function of m and

a/p.

i from Eq. (Al). 1In Fig. Al, C is illustrated for the

parameter a/pi = 100. The n-th higher harmonics which has
n nodes, has larger eigen value than the principal mode and
is less dangerous. We look for an off-resonant instability.

In the limit w > k..ve >> k“Vi, we approximately have EiZ(Ei)
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-1 and £_2(g) = -1 - kﬂzvez/wz. Equation (38) can be

rewritten as

2 2 2 2
\ Vv,
w; + Wi LOZ _ kn Ve w + __ki_ff_(u)*+(d-r) =0 | <A3)
T I('+C) T(l+C)

w becomes complex ( which means instability ) number, when

T [ 9T (crsg)an ]

C < -1 N (AY4)
Wg 16 W[ 3T (wrup) -x] ’
is satisfied. Or writing Wy = TKkini,
ke M. @’ [9T (kX1 4 K]
C < -] + 2 —= T (AE)

.

W Me MR 1bx [ 3T (kp)x ]

This condition is more easily satisfied for low m mode.
For the mode which satisfies the condition k..ve >> W

>>k"vi, the condition of resonant instability is easily

satisfied. "We have the condition for resonant instability

as
-1 < C < 0 . (A6)

The linear growth rate is derived in the same way as the well-

established local theory.
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Figure Captions

Fig. 1 Schematic configuration of current carrying
plasma column. The 6-component of the magnetic field
is generated by the plasma current. The longitudinal

periodicity length is 2mR.

Fig. 2 Typical radial distribution. J_ is normalized
Fig. 4 z
to the central value and g(r)/q(a) is shown. The

6-component of the magnetic field Bp is shown in an

arbitrary unit.. We take the radius of the plasma,
a, as the current channel radius L s and an = LT2 =
a?/3.

Fig. 3 The b—ni plane is devided into 4 regions. 1In

the regions B and D,w < 0 holds. In the regions C
and D, u? is negative and the convective damping of

the wave is annihilated.

Fig. 4 Linear growth rate ( normalized to w, ) for the
2id. 2 *
universal moée. We take mi/me = 1836, Ng = Nn; = u/ve
= 0 and t = 1. The shear parameter is indicated on

each line, KLS = 12, 20 and 32. Marginal stability

is seen in a wide range of parameter b.

Fig. 5 The effect of the electron temperature gradient
is shown. We take KLS = 32, tT=1, u= 0. When

Ne > 0, stabilization is seen. When Ne < 0, stability
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Fig. 6
Fig. 7
Fig. Al

is marginal.

Linear growth rate of the current driven drift
instability. The parameter u/ve is denoted on each
line. We take KLS = 32, and Ng = n; = 0.

Linear growth rate of the current driven drift
instability in the presence of the electron temperature
gradient. We take u/ve = ,2 and Ng = 1. The shear
parameter is indicated on each line. If the shear is

strong enough, the instability is suppressed.

Eigen value C is shown as a function of m for the

parameter a/Pi = 100,



Fig. 1
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