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In recent Large Helical Device (LHD) experiments, radial profiles of ion temperature, electric field, etc. have
been measured in the m/n = 1/1 magnetic island produced by island control coils, where m is the poloidal mode
number and n the toroidal mode number. When the plasma transport in radial profiles is numerically analyzed,
an average over a magnetic flux-surface in the island is a very useful concept to understand the transport. When
averaging, a proper labeling of the flux-surfaces is necessary. In general, it is not easy to label the flux-surfaces
in a magnetic field containing the island, compared with the case of a magnetic field configuration having nested
flux-surfaces. In the present paper, we have developed a new computational technique to label the magnetic
flux-surfaces. This technique uses an optimization algorithm called the simulated annealing method. The flux-
surfaces are discerned by using two labels: one is classification of the magnetic field structure, i.e., core, island,
ergodic, and outside regions, and the other depends on the value of the toroidal magnetic flux. We have applied
this technique to an LHD configuration with the m/n = 1/1 island, and successfully discriminated of the magnetic
field structure.
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1. Introduction
A flux-surface average of some quantity, e.g., particle

flux, heat flux, etc., is a very useful concept in the trans-
port analysis of a toroidal plasma. The flux-surface average
of a function Φ(x) is defined by the volume average over
an infinitesimally small shell with volume ∆V , where ∆V
lies between two neighboring flux-surfaces with volumes
V and V + ∆V , and is denoted as

〈Φ(x)〉 = lim
∆V→0

1
∆V

∫∫∫
∆V
Φ(x)d3x, (1)

if there exist closed flux-surfaces. When averaging, we
have to label the magnetic flux-surfaces; e.g., if nested
flux-surfaces exist, the surface is labeled by the volume
enclosed by the surface in the Hamada coordinates [1],
and by the toroidal magnetic flux in the Boozer coordi-
nates [2, 3]. In a non-axisymmetric configuration, the ex-
istence of nested flux-surfaces is not guaranteed [4]. How-
ever, it is possible to numerically obtain an MHD equilib-
rium having closed magnetic surfaces by using a suitable
three-dimensional equilibrium code which does not as-
sume the existence of nested flux-surfaces, e.g., the HINT
code [5–7]. In general, such an equilibrium includes mag-
netic islands and ergodic regions. Thus, magnetic flux-
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surfaces are not easily labeled. Without any approxima-
tions, we cannot evaluate flux-surface averages in terms
of magnetic coordinates in a non-axisymmetric configu-
ration. Although quasi magnetic-coordinates can be con-
structed on the equilibrium with the islands as shown in
Refs. [8–12], such a coordinate system does not corre-
spond to a magnetic coordinate system along the flux-
surfaces of the islands.

In recent Large Helical Device (LHD) experiments,
radial profiles of ion temperature, electric field, etc. have
been measured in the m/n = 1/1 magnetic island produced
by island control coils [13, 14]. Numerical transport anal-
ysis is required for understanding the experimental results;
thus, the average over the island’s flux-surface is necessary.

In the present paper, we develop a new computational
technique for labeling magnetic surfaces in the LHD con-
figuration. The flux-surfaces can be labeled by tracing field
lines, as shown in Refs. [15–18]. The main task of the
technique is to identify a flux-surface from the Poincaré
plots of a field line on a poloidal cross section. For the
identification, the points of the Poincaré plots, i.e., the
Poincaré points, should be numbered along a closed curve
given by the poloidal cross section of a flux-surface; in the
present paper this procedure is called the ordering of the
Poincaré points. One of the simplest methods for order-
ing the Poincaré points is to search for each point’s nearest
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neighboring point. However, this method often fails at, for
example, a closed magnetic surface on the island. In order
to improve the ordering procedure, we employ an algo-
rithm called the simulated annealing method [19,20]. This
method is familiar as a successful algorithm to solve the
traveling salesman problem [21], which is a problem in-
volving a traveling salesman who has to visit a number of
cities, and how to plan the trip so that every city is visited
once and just once while making the whole trip as short as
possible. This method is useful for solving our problem,
i.e., how to connect each Poincaré point of a field line. In
the technique developed here, the magnetic flux-surfaces
are identified by two labels, IREGION and TFLUX, which
describe the classification of a magnetic field structure and
a toroidal magnetic flux, respectively.

When the number of sampling flux-surfaces is quite
large, a calculation code based on the developed technique
should be parallelized. The code has been programed us-

Fig. 1 Flowchart of the developed technique. The chart describes the procedure for labeling a flux-surface which includes an evaluation
point A. This technique is grouped into three parts: I) classification of regions, II) ordering Poincaré points, and III) calculation of
toroidal magnetic flux, where IREGION is the label of the regions and TFLUX is the value of the toroidal flux.

ing High Performance FORTRAN [22] on a vector parallel
supercomputer.

This paper is organized as follows. In Sec. 2, we show
the outline of the developed technique which is composed
of three parts shown in Secs. 2.1-2.3; the numerical re-
sults are shown in Sec. 2.4. Finally, a summary is given
in Sec. 3.

2. Computational Technique
We explain the outline of the technique as follows.

Figure 1 shows a flowchart of the developed technique. As
seen in the flowchart, the technique is constructed of three
parts: I) Classification of regions, II) Ordering of Poincaré
points, and III) Calculation of toroidal magnetic flux. In
part I, for a given magnetic field configuration, we classify
regions of the magnetic field structure, i.e., core, island, er-
godic, and outside regions. In part II, we trace a field line
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to obtain the Poincaré points on a poloidal cross section,
and order these points by using two methods explained in
Sec. 2.2. In part III, we calculate a value of the toroidal
magnetic flux for the closed magnetic flux-surface repre-
sented by the Poincaré points, and label it by the value.

2.1 Classification of regions
In this section, we consider the classification of re-

gions of the magnetic field structure. Because there does
not exist a magnetic coordinate system along the closed
magnetic surfaces in both core and island regions, we have
to classify the regions, as shown in Fig. 2. We can discern
four parts of the structure, i.e., outside, ergodic, island, and
core regions. Here, we consider that the m/n = 1/1 island
is visible under certain numerical accuracy, while the other
islands are not. Similarly, the ergodic region is considered
to be visible but narrow.

In general, it is not easy to numerically recognize the
topology of a magnetic field structure, which is character-
ized as the four regions mentioned above, without prelim-
inary knowledge of the structure. Therefore, first of all,
in order to guess the topology, we calculate the Poincaré
plots of field lines on a poloidal cross section; for exam-
ple, we trace the field lines having their starting points
at certain regular intervals on Z = 0 axis. We carefully
pick three flux-surfaces from the Poincaré points in order
to obtain an initial guess of three boundaries between the
outside and ergodic regions, island and ergodic regions,
and inside and ergodic regions. Thus, the topology of the
structure is defined in the above way under the accuracy of
the intervals between magnetic flux-surfaces given by the
Poincaré plots, and more precise topology of the structure
is neglected. Note that the above procedure for the topol-

Fig. 2 Classification of the regions (right-hand) and illustration
of the calculation of the toroidal magnetic flux (left-
hand). We classify the regions into four parts: outside,
ergodic, island, and core regions by the label IREGION
= 1, 2, 3, and 4, respectively. A magnetic coordinate
system does not exist along both the closed magnetic
flux-surfaces, ΨA and ΨB. For calculating the toroidal
flux TFLUX at the evaluation point A, we sum the toroidal
fluxes B(i)

ϕ ∆S i over the interior region S A of ΨA.

ogy is a premise for a user of the developed calculation
code, i.e., the user already knows the topology but is not
required to have precise information regarding the bound-
aries between each region. Next, in order to determine the
boundaries, we input the initial guess of the boundaries ob-
tained above into the calculation code, and the code starts
searching the boundaries from the initial guess. The code
numerically determines the boundaries by finding a flux-
surface which encloses a maximum area of each region.
This procedure is performed as follows. In order to judge
whether or not a flux-surface can be constructed, the code
orders the Poincaré points of the flux-surface and checks
for the nonexistence of a crossing path between any points.
The details of ordering Poincaré points and treatment of
crossing paths will be shown in the following sections. The
code then checks a neighboring flux-surface by shifting the
starting point of Poincaré points calculation toward the di-
rection in which the area of each region becomes larger.
Note that when a flux-surface is a rational surface in each
region, there may exist crossing paths even if we use the
ordering procedure. In such a case, the code searches for
other points which can increase the region’s area. Thus, by
representing the operation, the code determines the bound-
aries enclosing the maximum area of each region. We pre-
suppose that each region, i.e., inside, outside, and island
regions, consists of nested flux-surfaces under the accuracy
considered here.

By using the determined boundaries, we classify the
regions into four parts; IREGION = 1 (outside region), 2
(ergodic region), 3 (island region), and 4 (core region), as
shown in Fig. 2.

2.2 Ordering Poincaré points with annealing
method

Next, the Poincaré points of a field line must be or-
dered on a poloidal cross section in order to identify the
closed magnetic flux-surface. Note that in an ergodic re-
gion, a visible flux-surface does not exist, thus field line
tracing is not performed in such a region. For ordering,
we use two methods. One is a simple method that orders
the points by searching for each point’s nearest neighbor-
ing point, where the ordering begins from a given start-
ing point of the Poincaré points. This is a simple ways of
ordering the points. But we frequently encounter a case
in which this simple method does not work well, as will
see later. The other method is based on the simulated an-
nealing method [19, 20]. This method is a well-known op-
timization algorithm employed in the traveling salesman
problem [21] (the problem of finding the shortest cyclical
itinerary for a traveling salesman who must visit each of N
cities in turn). We use it to order the Poincaré points, when
the simple method does not perform effectively (see part
II of Fig. 1). In the following, we provide a brief descrip-
tion of the simulated annealing method used for solving
our problem.
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2.2.1 Simulated annealing method
The simulated annealing method is a probabilistic al-

gorithm for combinatorial optimization problems [23]. In
particular, when a given function has many local extrema,
the method is powerful for searching the global extremum.
Of course, the most sure method for searching the global
extremum is to search for all possibilities; e.g., in the trav-
eling salesman problem, the most sure method searches
the true route with the minimum length from all possible
routes. In such a method, we can always find the true ex-
tremum. But this method is extremely time-consuming;
for example, in the traveling salesman problem involving
N cities, the calculation time increases as ∼ exp(N) [23].
Note that the most sure method is completely different
from the simple method explained above, because the
starting point for searching the true route in the simple
method is fixed. On the other hand, the simulated an-
nealing method can give us a better solution under real-
istic calculation costs. Our main aim in this section is to
identify a poloidal cross section of a flux-surface by using
the Poincaré points of the field line. We assume that the
cross section of the flux-surface is obtained by connecting
the points via the shortest route. This assumption is not
always guaranteed to identify the flux-surface, but it is al-
most valid for practical cases, as shown in Sec. 2.2.3.

The simulated annealing method is formulated by
analogy with the annealing of a heated metal with lattice
defects, under slow cooling [19]. As the temperature de-
creases slowly, the heated metal forms a pure crystal which
is the material’s lowest energy state. On the other hand,
if the temperature decreases rapidly, it forms a non-crystal
which is not the lowest energy state. This analogy suggests
us that the lowest energy state, i.e., the global minimum of
its energy function, is obtained by slow cooling. An en-
ergy equilibrium with a temperature T is distributed with a
Boltzmann probability distribution,

P(E) ∼ exp
(
− E

kT

)
, (2)

where k means the Boltzmann constant. According to the
probability P(E), a lower energy state can climb up to a
higher energy state, i.e., there is a possibility that the sys-
tem can escape from a local minimum of the energy to a
better state. As shown in Fig. 3, when the system is trapped
in a local minimum of the function, it can escape with the
probability P ∼ exp[−(E2 − E1)/T ], where the energy of
the system is changed from E1 to E2(> E1). As the temper-
ature parameter T decreases slowly, the probability P be-
comes small. We may then reach the function’s global min-
imum. In the following, we show how the method works,
with a simple example.

2.2.2 Illustration of annealing method
Here we illustrate the annealing method applied to the

traveling salesman problem. The N points are provided as
shown in Fig. 4, where the number of each point describes

Fig. 3 Escape from a local minimum. When the system is
trapped in a local minimum E1, it can escape from there,
according to the probability P ∼ exp[−(E2 − E1)/T ].

Fig. 4 The initial route of the traveling salesman problem. The
numbers describe the initial order.

the initial order i = 1, . . . ,N, N = 10 as seen in Fig. 4.
Each point is located at (xi, yi) and the solid line in the fig-
ure represents the initial route of the salesman. An arrange-
ment is defined as a permutation of the number 1, . . . ,N,
interpreted as the ordering in which the points are visited.

The initial order is rearranged as follows. We ran-
domly choose a segment from the initial route for the rear-
rangement. For example, in Fig. 5, a segment of the route
is chosen as the red line, where n1 is the beginning of the
segment and n2 the end of the segment. Here, this segment
is named n1-n2. We introduce an objective function E to
estimate a degree of the optimization. This function can be
defined in various forms according to the considered cases.
In our problem, the objective function is given as the total
length of the route,

E =
N∑

i=1

L(i, i + 1), (3)

where the point i = N + 1 is identified with the point i = 1,
and L( j, k) is defined to represent a path-length between a
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Fig. 5 The choice of the segment for the rearrangement. In this
case, the segment n1-n2 indicated by the red line is the
target for the rearrangement operations, i.e., reversal and
transplant.

point j and a point k; i.e.,

L( j, k) :=

√(
x j − xk

)2
+
(
y j − yk

)2
. (4)

For finding the solution of the problem, the function E
should be minimized. In the method, we rearrange the
order of the points in either of the following two ways,
reversal or transplant, which have the same probability.

The reversal operation involves the removal of the seg-
ment and its replacement with the same points in the op-
posite order. As shown in Fig. 6, we reverse the segment
n1-n2; i.e., we connect n1 to n4, and n2 to n3. In the fig-
ure, the blue lines represent new paths after reversing the
segment. We then introduce the cost of the reversal op-
eration, Crev, defined by the difference between the total
lengths of the route before and after the reversal operation;
i.e., Crev = Eafter−Ebefore. In the case of Fig. 6, considering
only changing paths, the cost of the reversal is

Crev =
[
L (2, 7) + L (3, 8)

]
−
[
L (2, 3) + L (7, 8)

]
. (5)

The other method of rearranging the order of the
points is the transplant operation in which the segment is
removed and transplanted between two neighboring points
which are randomly chosen from the points not on the seg-
ment. In Fig. 7, the destination path of the transplant, n3-
n4, is chosen. We transplant the segment n1-n2 into the des-
tination path n3-n4, and then close the route. In the figure,
the dashed-lines represent the old paths which are replaced
by the blue paths after transplanting the segment n1-n2 .
The cost of the transplant operation, Ctr, is given as

Ctr =
[
L (2, 8) + L (9, 7) + L (3, 10)

]
−
[
L (2, 3) + L (7, 8) + L (9, 10)

]
. (6)

Fig. 6 Reversal of the segment n1-n2. In the reversal operation,
the segment n1-n2 is reversed; i.e., the beginning point n1

of the segment is connected to the point n4, and the end
point n2 to the point n3. Dashed lines represent the old
paths before the reversal operation.

Fig. 7 Transplant of the segment n1-n2. In the transplant oper-
ation, the segment n1-n2 is transplanted into n3-n4 which
is randomly chosen; i.e., the beginning point n1 is con-
nected to n4, and the end point n2 to n3. Point 2 has to
be connected to point 8 in order to close the route. Blue
lines represent new paths in the route, and dashed lines
represent the old paths before the transplant operation.
By repeating the transplant operation (this figure) and the
reversal operation (Fig. 6), the re-ordering of the points is
executed.

After estimating the cost of the reversal or transplant oper-
ation, we adopt the rearrangement according to the prob-
ability PA based on the Metropolis algorithm [24], where
PA is defined by the cost C and the temperature T ,

PA :=

{
1 for C ≤ 0
exp (−C/T ) for C > 0

. (7)

By the above operations, the annealing, i.e., escape with
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the Boltzmann probability distribution P(E) in Eq. (2), is
executed.

We proceed through the above steps, i.e., the repeti-
tion of the rearrangements and the annealing operations,
according to an annealing schedule which controls the
procedure for reducing the temperature parameter T [23].
When efforts to reduce the total path-length E become suf-
ficiently discouraging, the all calculation steps are stopped.

2.2.3 Demonstration and application of annealing
method

We demonstrate the annealing method using an ex-
ample of the traveling salesman problem. As shown in
Fig. 8, an initial set of 30 random points is given, where
the number means the initial order in which the points are
visited, and the solid lines represent the initial route of
the salesman. The total length of the initial route is cal-
culated as Einitial = 18.16521. The results of the simple
method for searching the nearest neighboring point and
the simulated annealing method are shown in Figs. 9 and
10, respectively. Each route’s total length is calculated as
Enearest = 4.994745 and Eanneal = 4.546217. Using the sim-
ulated annealing method, we obtain better solution for op-
timization of the cyclical itinerary. This means that when
the simple method is used, the system is trapped in a local
minimum of the total length E, as shown in Fig. 3, because
of the wrong choice of initial starting point. Therefore,
if the simple method does not function effectively as seen
in such a situation, we have an alternative way, i.e., the
simulated annealing method, to obtain the solution of the
traveling salesman problem.

We apply the annealing method to order the Poincaré
points of a field line. Specifically, we consider that the
route connecting the points, which is obtained by using the

Fig. 8 The initial set of 30 points. The numbers describe the
initial order and the solid line represents the initial route.
The total length of the initial route is Einitial = 18.16521.

annealing method, is the closed curve of a poloidal cross
section of a magnetic flux-surface. Note that the minimum
of E is not always guaranteed to identify a flux-surface; in
general, when the total number of points is small, many
possible routes can be considered for lack of sufficient in-
formation regarding the surface, and the shortest route does
not always express the flux surface’s true curve. If the
number of points is sufficiently large, then the flux-surface
is usually identified by the minimum of E.

Fig. 9 Result given by the simple method searching the nearest
neighboring point. The ordering fails, because the path
from point 30 to point 1 crosses the path from 11 to 12.
The total length of the route is Enearest = 4.994745.

Fig. 10 The result given by the simulated annealing method. The
ordering succeeds, because all paths from point i to point
i + 1 do not cross each other, where i = 1, 2, . . . , 30, and
point 31 is identified as point 1. The solid line may be a
better minimum solution of the total length of the route.
In fact, the total length is Eanneal = 4.546217, which is
less than the result of the simple method shown in Fig. 9.
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Fig. 11 Comparison between the results of the two ordering methods, i.e., the simple method and the simulated annealing method, in an
LHD configuration with an m/n = 1/1 island. The ordering by the simple method is unsuccessful; see the red line in figure (a).
On the other hand, the simulated annealing method succeeds; see figure (b).

As shown in Fig. 11 (a), the simple method of search-
ing the nearest neighbors often fails the ordering. Of
course, if the number of the points becomes extremely
large, then the simple method may succeed to obtain the
flux-surface, but it is very time consuming. As shown in
Fig. 11 (b), the annealing method can find the flux-surface
using an amount of computing time comparable to the case
of Fig. 11 (a). Therefore, the annealing method enables us
to obtain a flux-surface within a realistic calculation time.
Note that it is difficult to identify a rational surface by us-
ing the methods introduced here, because in this case the
number of their Poincaré points is not sufficient to cover
the surface, and crossing paths may be caused by insuffi-
cient information regarding the surface guessed from the
points. In such a case, we define the rational surface by
interpolating from neighbor irrational surfaces (see part III
of Fig. 1).

2.3 Calculation of toroidal fluxes
In the last part of the developed technique, we calcu-

late a value of toroidal magnetic flux ΨT and assign the
label TFLUX to the flux-surface. In the following, we con-
sider the case of ΨA in Fig. 2. As shown in the figure, we
assign square areas ∆S i to each grid-point (xi, yi) which is
included in the interior region S A on a poloidal cross sec-
tion. Note that the accuracy of the calculation depends on
the number of grids. The toroidal flux for the point A in
Fig. 2, for example, is written as

ΨT =

∫
S A

Bϕ dS , (8)

where Bϕ is the toroidal component of the magnetic field
B. We substitute the value of the magnetic field at the grid-
point (xi, yi), B(i), for the value in a corresponding area

∆S i. The toroidal component of B(i) is denoted by B(i)
ϕ .

Thus we numerically proceed to calculate toroidal flux by
the sum of B(i)

ϕ ∆S i,

ΨT

ΨN
�
∑

(xi ,yi)∈S A
B(i)
ϕ ∆S i

ΨN
≡ TFLUX, (9)

where ΨN is the normalization and TFLUX is the label de-
noting the value of the toroidal flux. Of course, we can
improve the integration scheme more precisely, although
we use the simple scheme described above.

If an evaluation point is located on a rational surface or
an invisibly thin island, we calculate the toroidal fluxes at
the neighboring points of the original point, and interpolate
these calculation into the original point, as mentioned in
part III of Fig. 1.

2.4 Numerical results
In order to check the convergence of the toroidal flux

calculation, our result is compared with analytic value of
ΨT in the magnetic field of a simple tokamak configuration
given as

BR = −B0R0

q
Z
R2
,

Bϕ = −B0R0
1
R
, (10)

BZ =
B0R0

q
(R − R0)

R2
,

in terms of the cylindrical coordinate system, (R, ϕ, Z),
where B0 is the strength of the magnetic field at the mag-
netic axis, R0 the major radius of the axis, and q a safety
factor. It is confirmed that the relative error of our result
with the analytic value becomes sufficiently small (<∼ 10−4)
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as the number of the grids increases. The relative er-
ror does not depend significantly on the choice of a flux-
surface except a rational surface.

We show the results for labeling the magnetic flux-
surfaces in certain magnetic field configurations. In
Fig. 12, we label the flux-surfaces on a poloidal section
of a magnetic configuration given by adding an m/n =
1/1 magnetic island to the simple tokamak configuration,
which is referred to in this paper as the test configuration.
Here, we have used Eulerian coordinates, i.e., the helical
coordinate system [6]. The relation between the coordi-
nates (u1, u2, u3) and the Cartesian coordinates (X, Y,Z) is
given as,

X =
(
R0 + u1

∗ cos hu3 + u2 sin hu3
)

cos u3,

Y = −
(
R0 + u1

∗ cos hu3 + u2 sin hu3
)

sin u3,

Z = −u1
∗ sin hu3 + u2 cos hu3,

with u1∗ = u1 + δ, where R =
√

X2 + Y2 and ϕ = −u3.
Here, h is the rotation number along the u3 direction and
δ the deviation of the geometrical axis of the helical co-
ordinates. In this paper, we set the values as h = 0 and
δ = 0. The label of the regions of the magnetic field struc-
ture IREGION and the label of toroidal fluxes TFLUX are
indicated by colors and their hues, respectively. Here, we
consider the success rate of ordering the Poincaré points
through the use of the simple method. The rate is propor-
tional to the number of flux-surfaces successfully identi-
fied; i.e., there are no crossing paths in the ordering and
the points are not located on a rational surface or on an in-

Fig. 12 Label of the magnetic flux-surfaces in the test configu-
ration on a poloidal section (u3 = 0), where IREGION
and TFLUX are indicated by colors and their hues, respec-
tively.

visibly thin island. Table 1 shows the success rates of the
simple method in the m/n = 1/1 magnetic island of the test
configuration. From the table, we see that as the number of
points increases, the rate for the simple method approaches
100%, while the rate for the developed method is always
100% for all cases shown in the table. As seen in Fig. 13,
when the number of the points is small, the simple method
often fails, because there is a case in which the path-length
in the true curve L(i, j) is larger than the path-length in the
less efficient curve L(i, k), i.e., L(i, j) > L(i, k). Thus, the
simple method selects a wrong point, as shown in Fig. 13.
We should note that there exist some rational surfaces and
invisibly thin islands in this configuration. When we en-
counter points on a rational surface or an invisibly thin is-
land, we interpolate the label of the surface based on the
neighboring irrational surfaces (see part III of Fig. 1).

Finally, we apply the developed technique to an LHD
vacuum configuration with the m/n = 1/1 island, where
B0 = 3 T and R0 = 3.6 m. The Poincaré plots of the field
lines are shown in Fig. 14, where the vacuum magnetic
field is calculated by using the Biot-Savart law [25–27].
Figure 15 shows the result of the labeling of the config-
uration. In this figure, the green line represents the outside

Table 1 Success rate of the simple method of ordering the
Poincaré points. The result is obtained in the m/n = 1/1
island in the test configuration. On the other hand, the
developed method always succeeds.

Number of points Success rate (%)
50 3.0

100 46.0
200 78.0
500 93.0

Fig. 13 A result of the simple method of ordering the Poincaré
points in the test configuration shown in Fig. 12. The Red
line represents the failure to connect each point and the
dashed line represents the true solution. Because L(i, j) >
L(i, k), the ordering fails. Note that point N has to be
connected to point 1 in order to close the curve.

038-8



Plasma and Fusion Research: Regular Articles Volume 1, 038 (2006)

Fig. 14 Poincaré plots of field lines in the LHD vacuum configu-
ration with the m/n = 1/1 island.

Fig. 15 Label of the magnetic flux-surfaces in the LHD configu-
ration with the m/n = 1/1 island on a poloidal cross sec-
tion (u3 = π/10). The labels, IREGION and TFLUX, are in-
dicated by colors and their hues, respectively. The green
line represents the outside region which is very narrow,
and the flux-surfaces in the exterior of the line are not
visible under the current level of calculation accuracy.

region which is very narrow, thus magnetic flux-surfaces
in the exterior of the line are not visible under this calcula-
tion accuracy. We have succeeded in labeling the magnetic
flux-surfaces in a configuration containing the island. A
radial profile of the labeling is shown in Fig. 16. The pro-
file represents the value of TFLUX in the core and island
regions at u2 = Z = 0 and u3 = π/10, respectively. The

Fig. 16 Radial profile of the labeling in the LHD configuration
containing the m/n = 1/1 island as shown in Fig. 15.
The figure indicates the profile of the label TFLUX at
u2 = Z = 0 and u3 = π/10. The red line represents
the profile in the core region (IREGION = 4) and the blue
line the island region (IREGION = 3). Note that in this
figure the minimum of TFLUX in the island region dif-
fers slightly from zero. The green dashed line indicates
the position of the outside region (IREGION = 1). The
ergodic region (IREGION = 2) exists in the gaps of the
profile. At R � 3.25 and 3.95 m (Z = 0), the profile
crosses an invisibly small island with m/n = 2/1; see
also Fig. 14.

outside region is indicated by the green dashed line, and
the ergodic region exits on the gap between the other three
regions.

3. Summary
The labeling of magnetic flux-surfaces is needed for

transport analysis in non-axisymmetric magnetic field con-
figurations containing magnetic islands. Frequently, la-
beling the flux-surfaces is difficult because of their com-
plexity. We have developed a computational technique for
labeling the magnetic flux-surfaces by applying a simu-
lated annealing method. This algorithm finds the global
extremum. The primary challenge is the ordering of the
Poincaré points of field lines on a poloidal cross section in
order to identify the closed magnetic flux-surfaces. In the
developed technique, we label the flux-surfaces in terms
of two labels describing the regions of the magnetic field
structure (IREGION), and the values of the toroidal mag-
netic fluxes (TFLUX). Of course, a magnetic coordinate sys-
tem can be locally constructed on the island region by us-
ing the techniques of the present paper and Refs. [15–18].

Using the technique developed here, the flux-surface
average can be obtained wherever closed flux-surfaces ex-
ist; for example, the flux-surface average of a function
Φ(x) is given as

〈Φ(x)〉 � 1
∆V

∫∫∫
∆V
Φ(x)d3x, (11)

where ∆V is the volume of a small shell which lies between
two neighboring flux-surfaces determined by the devel-

038-9



Plasma and Fusion Research: Regular Articles Volume 1, 038 (2006)

oped technique. Note that in an ergodic region (IREGION
= 2), the average is given as

〈Φ(x)〉 � 1
V2

∫∫∫
V2

Φ(x)d3x, (12)

where V2 is the total volume of an ergodic region which
is assumed to be narrow. This average may be useful in
analyzing the transport phenomena in terms of the neo-
classical transport theory. Neoclassical transport analysis
is frequently carried out on magnetic coordinates [28–31].
However, in an LHD equilibrium having the m/n = 1/1
island, there does not exist a magnetic coordinate system
along the flux-surfaces in both the core and island regions.
Therefore, we are currently developing a transport simu-
lation code based on techniques without magnetic coordi-
nates [32–34]. The results of transport analysis in/around
the island region will be reported in the near future.
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