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As analyzed in Ref[l], one of complicated problems
caused by non-symmetries of the magnetic configurations is
the integration constant for the banana regime expansion of
the drift kinetic equation (DKE) determining the
neoclassical parallel viscosity. Hereafter we use the word
“parallel” to express the “force parallel to the magnetic field
line”. The viscosity is essential in determining the
neoclassical parallel flows such as so-called bootstrap
currents. To clarify the problem on the integration constant,
it is convenient to start from the DKE defined in Ref.[2] and
Ref.[1]. In this theory separating the effects of the field
particle portion of the collision operator Ca(fam, fb1) by
using the friction-flow relation, the viscosity coefflclent is
determined by following equation with Cy(fa1, fomM)= Ca
(pitch-angle- scattermg collision operator with the collision
frequency of vD M 121,

(V//_Ca )GXa OXa -
Here V)=v;beV ,=const) is linearized orbit propagator. It also
is convenient to divide the source term Oy, expressing the
radial drifts and corresponding response perturbation Gyxa
into three components by using a method in Ref.[1], oxy =
oxa avg), oxa (sym), O.Xa(asym)’ G = G (avg) +Gxa (sym)
G a(asym). The difficulty in determmm% the 1ntegrat10n
asym) _ (asym)
constant appears only in (V//—Ca
since this part does not completely satlsfy the solublllty
condition / (oxa/v)dl = 0 for the trapped particles in the
banana regime expansion method. Even though the lowest
order equation does not include the collision effects in this
exg%%sion V,G = Oxa asym) and V//GXa(aSym)(l) =
C, G Xa(asym) considering VDa as a expansion parameter,
the actual distribution function is determined by finite
collision effects. A specific method was used to derive the
viscosity force only by calculating the circulating particle
distribution without explicit treatments of the trapped
particles [3]. It was a utilization of the particle and energy
conservation of the DKE and a fact that we have to know
only (B/ v//Lj(3/2)d3v) moments of the DKE. Explicit
expressions for this circulating particle distribution
G a(asym)(o) are shown in Refs.[1,3], but to know them is not
essential for understanding the problem. Important facts
there are only that: 81) O'Xa( sym) is an even function of v,

and thus Gy (asym)( is an odd function of v,, (2) and
therefore it must be Gya (asym (v,~0)=0. 2Because of a
relation v (A=1 )i = v{l1-B(6, é)/BM} = o{l-

B(6,0)/B(6\, CM)} , where A=uBw/w<1 is the normalized
magnetic moment and its range of A<l corresponds to
circulating particles, and (6v,{v) are the poloidal and
toroidal angles giving the maximum value By of the
magnetic field strength B on the flux surface by
Bv=B(6=6\, (={\), this condition means GXa(aSym)(O)(l 1,

6=6v, ¢(=0w)=0. By this determination at the
trapped/circulating boundary A=1, the lowest order solution
and the parallel viscosity force derived from the resulting
higher order equation include the coordinates (yv,{m).

When considering general non-symmetric toroidal
configurations, the condition B(6y,{m)=Bm sometimes may
correspond to a poloidally broadened “line” on the (6,0)
plane. In this case, the integration constant cos(m6y—n{y) is
determined by a finite collision effect at the
circulating/trapped boundary layer at Az=1[1]. In helical
heliotron devices such as LHD, this situation with the
broadened B=B)\ regions on the flux surfaces may appear at
the inboard side @=tm in high beta plasmas. In an internal
vertical (I.V.) magnetic field scan experiment in Heliotron-J
(H-J) to investigate the configuration dependence of the
bootstrap current, it was found that the broadened B=By
regions sometimes appear there [4]. In these situations, the
determination of the coordinates (6y,{v) as the integration
constant is numerically unstable if they are determined only
by the magnetic field strength B(g.z). Here we show a
calculation example with the determination of (6y,{m)
including the finite collision effect. Figure 1 shows the
magnetic field strength on a field line in a H-J configuration
with 1.V.==25, and the geometrical factor G® expressing
the parallel viscosity as the driving force for the bootstrap
current. In contrast to Ref.[4] where discontinuous “jumps”
in the radial distributions are caused by the numerically
unstable determination of (6y,{v), the present calculation
indicates that the “discontinuous” radial position is actually
continuous. However, even in this present result, however,
there is a steep radial gradient of G 9 In general, this kind
of radial gradients cannot exceed the upper limit determined
by finite orbit width effects. Although we do not consider
about this limit in the mono-energetic calculation in Fig.1
since it depends on the temperatures and particle species, it
is a remaining future theme.
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Fig.1 The magnetic field strength in the Heliotorn-J (I.V.=—
25) (left), and the geometrical factor associated with the
bootstrap current (right).
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