§4. Neoclassical Transport Calculation for the N -ITB in CHS

Nishimura, S., Sugama, H., Ida, K., Minami, T., Yoshimura, Y., Isobe, M., Suzuki, C., Okamura, S.

The parallel and radial plasma transports in multi-species plasmas in non-symmetric toroidal configurations are the important application of a recently developed neoclassical transport formulation[1]. In CHS, the toroidal flow of the fully ionized carbon in the counter direction and the reduction of the bootstrap current in the co-direction were observed when the neoclassical internal transport barrier (N ITB) with the strong positive radial electric field $\left(E_{\mathrm{r}} \sim\right.$ $10 \mathrm{kV} / \mathrm{m}$ at the minor radial position of $r / a \sim 0.3$) was formed in spite of the momentum input due to the coinjected heating neutral beam[2]. This phenomenon was qualitatively interpreted as the well-known mechanism making the flow in the viscosity-minimum direction that generates the counter-direction bootstrap current in the collisional regimes of the conventional helical configurations. Figure 1 shows the energy dependent pitch-angle-scattering collision frequency v of each particle species in the particle velocity range of $v_{\text {th }} / 10<v<5 v_{\text {th }}$, where $v_{\text {th }}$ is the thermal velocity, evaluated using the measured plasma parameters and the radial electric field at minor radial position of $r / a=0.5 \quad\left(T_{\mathrm{e}}=0.5 \mathrm{keV}, T_{\mathrm{i}}=0.20 \mathrm{keV}\right.$, $n_{\mathrm{e}}=2.5 \times 10^{12} \mathrm{~cm}^{-3}, E_{\mathrm{r}}=2.7 \mathrm{kV} / \mathrm{m}$). Here, a hydrogen plasma having fully ionized carbon with the density ratio of 10% as an impurity ($Z_{\text {eff }}=3$) is assumed. The curves in Fig. 1 give the integration paths to make energy-integrated viscosity and transport coefficients from the mono-energetic coefficients given as the function of v / v and E_{1} / v. As shown in the figure, the collisionality of each particle species cover the wide range from the Pfirsch-Schlueter to the super banana regimes. Furthermore, the low energy components of the distributions of ions suffer the effect of so-called toroidal resonance $\left(E_{\mathrm{r}} / B \sim v B_{\mathrm{p}} / B_{\mathrm{t}}\right)$ and thus their viscosity and transport coefficients have strong dependence on the radial electric field even in the plateau regime. An connection formula is used to connect the numerically obtained $1 / v$ regime mono-energetic diffusion coefficients to the analytical formula of the super banana regime monoenergetic diffusion coefficients[3]. The mono-energetic coefficients under the toroidal resonance can be obtained from the poloidal and toroidal viscosity coefficients in Ref.[4] using the procedure in Appendix B of Ref.[1].

Figure 2 shows the parallel flows and radial diffusion fluxes obtained for the N-ITB condition in CHS (at $r / a=0.5$) obtained by the procedure in Ref.[1]. The ambipolar condition $\Sigma_{\mathrm{a}} e_{\mathrm{a}} \Gamma_{\mathrm{a}}=0$ is attained at $E_{\mathrm{r}} \sim 8 \mathrm{kV} / \mathrm{m}$. Under this radial electric field strength, the parallel flows of the ions turn to counter direction with the velocities of $20 \mathrm{~km} / \mathrm{s}\left(\mathrm{C}^{6+}\right)$ and $50 \mathrm{~km} / \mathrm{s}\left(\mathrm{H}^{+}\right)$and the bootstrap current
$\Sigma_{\mathrm{a}} \Sigma e_{\mathrm{a}} n_{\mathrm{a}}\left\langle B u_{/ P} /<B^{2}\right\rangle^{1 / 2}$ in the co-direction is strongly reduced. These results qualitatively coincide with the experimental results.

Fig. 1 The energy integration path for the mono-energetic transport coefficients in $v / v-E_{\mathrm{r}} / v$ plane. \square, ∇, and denote the values for the thermal velocities.

Fig. 2 The parallel flows $u_{/ /}$and radial diffusion fluxes Γ calculated for the N-ITB condition in CHS (at $r / a=0.5$).

References

[1] Sugama,H. and Nishimura,S., Phys.Plasmas 9,4637(2002)
[2] Ida,K., Minami,T., et al., Phys.Rev.Lett. 86, 3040 (2001)
[3] Nishimura,S., Sugama,H., and Murakami,S.,
Ann.Rep.of NIFS, p.331(Apr.2001-Mar.2002)
[4] Shaing,K.C., Phys.Fluids B5, 3841(1993)

