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In recent studies for advanced helical devices, neoclassical
plasma flows such as bootstrap currents due to the viscosity
effects are attracting much attention as a new measure for
configuration optimization. In many applications of the
theory of the flows, a "1/v regime" formula derived by
Shaing, Carreras, et al.[1,2] in the Boozer coordinates has
been often used. This representation was an extension of a
previous theory developed in the Hamada coordinates [3].
As stated in Ref.[3], these existing formulas were obtained
neglecting effects of 1/v component of the perturbation at
the ripple trapped pitch-angle range and the
trapped/untrapped boundary layer in the phase space. In this
sense, we may have to interpret the formulas derived by
them rather as the expressions for the collisionless-
detrapping v regime [4]. Although this problem was already
suggested in Ref.[3], the discussion was only qualitative.
After our work in Ref.[5] to solve a problem on collisional
momentum conservation, it was quantitatively confirmed
that the analytical formulas express the viscosity in the
collisionless limits of the v regime (Es/v=0) [6]. Even if the
mono-energetic viscosity coefficients N* in the 1/v regime
can be obtained by using a direct numerical calculation of
the linearized drift kinetic equation [5], this kind of
numerical calculations cannot be incorporated in large
scaled codes utilizing iterative processes. A MHD
equilibrium calculation including the “self-consistent”
bootstrap currents is an example of the iterative calculation.
For this kind of application, a derivation of an analytical
expression for the 1/v regime (Eg/v=0) including the
boundary layer effect is now the next theme. By combining
our formulation and previous analytical theories for the
boundary layer [8] and the ripple diffusions[9], we obtained
the boundary layer correction N*(poundary) in the 1/v regime
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Here, we basically adopt the notations in Refs.[5,6], except
that dfr and o* are the effective ripple well depth and the
effective ripple well length correction, respectively[7], and
magnetic  field  strength is  assumed to  be
B=Bo[1+e1(6)tey(O)cos{LO-NE+y(0)}] [8]. Figure 1 shows
the analytical results given by an inter-regime connection
between the n regime (NV¥=N* ) and the 1/v regime (N* =
N 4 N*(boundary) ), Where N i given by Refs.[1-3].

Following Refs.[5,6], the magnetic fields assumed here is
B= Bo[1- & cosOp + &, cos(LOg — Nig )] with L=2, N=10,
Bo=1T, » '=0.15T'm, y'=0.4T-m, B,=0, B-=4T'm, & =0.1
and €,=0.05, respectively. The radial electric field strength
is changed in the range of 1x10°T= Ey/v 53x10_3T, and the
N* becomes smaller with increasing the radial electric field
strength. In viewpoint of practical applications, this strong
radial electric field limit N*=N*") given by the previous
analytical theory[1-3] may be appropriate for ions although,
the boundary layer correction should be added for electrons
with a large thermal velocity (Eg/v=0).
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Figure 1 geometrical factor G(BS)E—<Bz)N*/M* defined in
Refs.[5,6] as a function of the collisionality parameter v/v
and the electric field parameter Es/v. Both of the analytical
(solid curve) and the numerical results using the DKES code
(open circles) are shown.
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