§13. Density Threshold of Plasma Detachment in Gas Target Experiments

> Ohno, N., Ezumi, N., Mori, K., Takagi, M., Takamura, S. (School of Engineering, Nagoya University) Suzuki, H.

The simulated gas target divertor experiment has been performed to investigate fundamental physics of plasma detachment in the linear plasma device, TPD-I, which has a high heat flux and high density plasma in steady state¹). The existence of density threshold for plasma detachment was observed in our experiment. It is found the electronion temperature relaxation process is a key to deterimin the density dependence of the plasma detachment²).

The inset in fig. 1 shows the schematic of experimental arrangement. When the plasma is attached, the plasma is terminated by the water-cooled target plate, located at a distance 87 cm from the orifice. Neutral pressure P_n measured with the capacitance manometer at 33cm away from the orifice, can be controlled up to 25 mTorr. The n_e , T_e and space potential Vs are measured by two fast-scanned Langmuir probes deginated "downstream" and "upstream," installed at a distance 20 cm and 53 cm from the target plate, respectively.

Figure 1 shows the dependence of plasma pressure P, which is estimated as $n_{a}T_{a}$ by meaning n_{a} and T_{a} at different positions along the magnetic field line, on the neutral pressure $P_{\rm n}$. Furthermore, we note that the plasma pressure P is much larger than the neutral pressure P_n , in which the plasma detachment is observed. At a high plasma density $n_{c0} \sim 1.3 \times 10^{19} \text{ m}^{-3}$, the downstream plasma pressure is found to be decreasing more dramatically with an increase in P_n than that at upstream, as shown in fig. 1(a). On the other hand, at $n_{e0} \sim 2.0 \times 10^{18} \text{ m}^{-3}$, P is gradually decreasing at both positions. Figure 1(c) shows the ratio of P' s at downstream and upstream, which indicates that there is a steep plasma pressure drop only in the high plasma density $n_{e0} \sim 1.3 \times 10^{19} \text{ m}^{-3}$. Figure 2 shows n_{e0} 's dependence of the neutral pressure: P_{detach} at which plasma detachment occurs. As decreasing n, the threshold value of P_{detach} is found to be rapidly increased, and below $n_e \sim$ 1.6x10¹⁸m⁻³, plasma detachment is not observed in our experimental condition. This result indicates that there is the plasma density threshold for a generation of the plasma detachment.

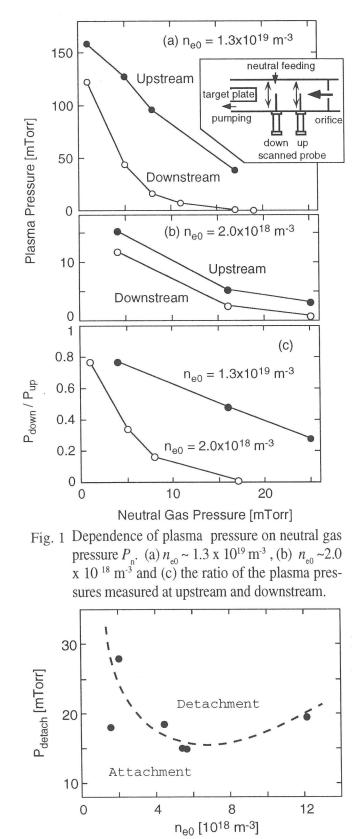


Fig. 2 Threshold values of the neutral pressure for the plasma detachment as a function of n_{c0} .

Reference

1) N. Ohno et al., J. Nucl. Mater. 220-222 (1995) 279.

2) N.Ohno et al., Contri. Plasma Phys. to be published.