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A saturation mechanism for microturbulence in a regime of weak zonal flow generation is

investigated by means of electromagnetic gyrokinetic simulations. The study identifies a new

saturation process of the kinetic ballooning mode (KBM) turbulence originating from the spatial

structure of the KBM instabilities in a finite-beta Large Helical Device (LHD) plasma.

Specifically, the most unstable KBM in LHD has an inclined mode structure with respect to the

mid-plane of a torus, i.e., it has a finite radial wave-number in flux tube coordinates, in contrast

to KBMs in tokamaks as well as ion-temperature gradient modes in tokamaks and helical

systems. The simulations reveal that the growth of KBMs in LHD is saturated by nonlinear

interactions of oppositely inclined convection cells through mutual shearing as well as by the

zonal flow. The saturation mechanism is quantitatively investigated by analysis of the nonlinear

entropy transfer that shows not only the mutual shearing but also a self-interaction with

an elongated mode structure along the magnetic field line. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4876960]

I. INTRODUCTION

Heliotron/stellarator devices confine plasmas with mag-

netic fields produced by external coils and thus are advanta-

geous in maintaining a steady discharge.1 The Large Helical

Device (LHD) is a heliotron device and is free from current

driven instabilities because of little net current. On the other

hand, the pressure gradient driven instabilities, such as bal-

looning modes and interchange modes, may cause degrada-

tion of confinement in high-beta LHD experiments,2–4 while

drift-wave turbulence causes the anomalous transport in a

low beta regime where the interplay between ion temperature

gradient (ITG) turbulence and zonal flows has been investi-

gated by means of electrostatic gyrokinetic simulations with

adiabatic electrons.5,6 Gyrokinetic simulation of electromag-

netic turbulence in finite beta helical plasmas is an important

task for predicting performance of helical fusion reactors and

a great challenge in computational science due to complex

three-dimensional magnetic structures as well as multiple

spatio-temporal scales related to electromagnetic ion and

electron dynamics.

Turbulent transport in finite-beta plasmas is studied by

means of electromagnetic gyrokinetic simulations.7–14 In

finite-beta tokamak plasmas, the growth rate of ITG insta-

bility is suppressed by magnetic field line bending as

plasma beta increases, while kinetic ballooning modes

(KBMs) are destabilized at high beta. Whereas in low-beta

torus plasmas, the zonal flow shear acts to regulate ITG

driven turbulence, it has been observed by gyrokinetic sim-

ulations that instabilities continue to grow without reaching

a physically relevant level of saturation at finite-beta toka-

maks.10,12 The corresponding problem in high-beta helical

plasmas, the identification of a saturation mechanism for

microturbulence in regimes where zonal flow generation is

weak, is the subject of the present work. This problem has

not been previously explored because of numerical difficul-

ties associated with complex three-dimensional magnetic

structures.

In this work, we investigate turbulent transport in finite-

beta LHD plasmas by using GKVþ code solving the electro-

magnetic gyrokinetic equations.13,14 The simulations reveal

that the growth of KBM in LHD is saturated by nonlinear

interactions of oppositely inclined convection cells through

mutual shearing as well as by the zonal flow. The saturation

mechanism is quantitatively investigated by analysis of the

nonlinear entropy transfer.15 The ratio of the turbulent

energy flux to the potential fluctuation amplitude is smaller

for the KBM turbulence at b¼ 1.7% than for the ITG turbu-

lence at b¼ 0.2%.

The paper is organized as follows. In Sec. II, our simula-

tion models are described. In Sec. III, linear instabilities of

standard LHD experiment with finite beta is studied by using

a model configuration. In Sec. IV, KBM turbulence in the

standard LHD is examined, and turbulent transport caused

by them is presented. In Sec. V, the saturation mechanism of

KBM turbulence is studied. Summary and discussion are

given in Sec. VI.

II. SIMULATION MODEL

We consider a localized flux tube plasma along a mag-

netic field line. The distribution functions of gyro-centers are

divided into the Maxwellian part and a perturbed part,

Fs¼FMsþ dfs, where FMs ¼ n0

ð2pTs=msÞ3=2 expð� msv2
k

2Ts
� lB

Ts
Þ, and

a perturbed part is represented by dfs ¼
P

k dfskexpðiSkÞ,
where rSk ¼ k? and the subscript s denotes particle species.

The model consists of the gyrokinetic equation of perturbed

part of distribution functions,
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the gyrokinetic Poisson and Ampere’s equations,

k2
?/k ¼ 4p

X
s

qs

�
dnsk �

qsn0

Ts
ð1� C0sÞ/k

�
; (2)

k2
?Akk ¼

4p
c

X
s

qsn0dusk; (3)

where Ekk¼�b� �r/kJ0s�1
c

@AkkJ0s

@t ;dnsk¼
Ð
dfskJ0sd

3v;n0dusk

¼
Ð
vkdfskJ0sd

3v, qi¼e, qe¼�e. In Eq. (1), Dfk
Dt¼

@fk
@tþ c

B

½/J0s;f �k and b� �rfk¼b�rfk� 1
B½AkJ0s;f �k, where ½f ;g�k

¼�
P

k0;k00dk;k0þk00b�k0?�k?
00 fk0gk00 and J0s¼J0(qsk?), where J0

is the zeroth order Bessel function. The drift velocities are

vds¼ c
qsB

b�ðlrBþmsv2
kb�rbÞ and v�s¼ cTs

qsB
b�rlnFMs, and

Cs ¼ �s

�
@

@vk
vkhsk þ v2

Ts

@hsk

@vk

 !

þ 1

v?

@

@v?
v2
?hsk þ v2

Tsv?
@hsk

@v?

� ��
(4)

is the Lenard-Bernstein collision operator, where hsk ¼ dfsk

þ qs

Ts
/kJ0sFMs is the non-adiabatic part of the perturbed part

of gyro-center distribution function. In Eq. (2), C0s ¼ e�q2
s k2
?

I0ðq2
s k2
?Þ, where I0 are the zeroth order modified Bessel func-

tion. Temperature and density gradients are uniform and are

represented by the parameter gs¼Ln/LTs in terms of density

scale length Ln ¼ �ðdlnn=dxÞ�1
and temperature scale

lengths LTs ¼ �ðdlnTs=dxÞ�1
.

The conservation equation of a quadratic quantity called

entropy balance equation is obtained from Eqs. (1)–(3)16 and

is written as

d

dt

X
s

dSs þWes þWem

� �
¼
X

s

Hs

LTs
þ TsCs

Lps
þ Ds

� �
; (5)

where Hs ¼
P

k Hs;k; Cs ¼
P

k Cs;k; Hs;k ¼ Hes;s;k þHem;s;k;
Cs;k ¼ Ces;s;k þCem;s;k; f ¼

P
k fk, where

dSs;k ¼
�ð

d3v
Tsjdfskj2

2FMs

�
; (6)

Ds;k ¼
�ð

d3v
Ts

FMs
df �sk þ

qs

Ts
/�kJ0sFMs

� �
Cs

�
; (7)

Wes;k ¼
*

k2
?

4p
þ
X

s

n0q2
s

Ts
½1� C0ðbskÞ�

 !
j/kj2

2

+
; (8)

Wem;k ¼
�

k2
?

4p

jAkkj2

2

�
; (9)

Hes;s;k ¼
*

Re
1

2
dpksk þ dp?sk �

5

2
Tsdnsk

� �
�iky/kc

B

� ��" #+
;

(10)

Hem;s;k ¼
*

Re
1

2
dqksk þ dq?sk

� �
ikyAkk

B

� ��" #+
; (11)

Ces;s;k ¼
*

Re dns
�iky/kc

B

� ��" #+
; (12)

Cem;s;k ¼
*

Re n0dus

ikyAkk
B

� ��" #+
; (13)

where h i and * denote the flux surface average and the com-

plex conjugate, respectively, and dpksk ¼
Ð

msv2
kdfskJ0sd

3v

¼n0dTkskþTsdnsk; dp?sk¼
Ð
lBdfskJ0sd

3v¼n0dT?skþTsdnsk,

n0dqksk¼
Ð

msv3
kdfskJ0sd

3v�3n0Tsdusk;n0dq?sk¼
Ð
lBvkdfskJ0s

d3v �n0Tsdusk are parallel pressure, perpendicular pressure,

parallel heat flux, and perpendicular heat flux, respectively.

The GKVþ code13,14 is applied to the analysis of turbu-

lent transport due to micro-instabilities at finite-beta in a

model configuration of standard LHD plasmas. The magnetic

field strength of the model LHD plasma is given by

B ¼ B0 1� �00 � �t cos z�
Xl¼Lþ1

l¼L�1

�l cos½ðl�Mq0Þz�Ma�
 !

;

(14)

in terms of the flux tube coordinate (x, y, z, vk, l),17 where

L¼ 2, M¼ 10, and a¼ 0, and the magnetic drift frequency is

given by

vds � k? ¼
�c

qs

�
lþ

msv2
k

B

�
�t

r

�
ky

�
r�000

�t
þ r�0t
�t

cos z

þ
Xl¼Lþ1

l¼L�1

r�0l
�t

cos½ðl�Mq0Þz�Ma�
�
þðkx þ ŝzkyÞ

� sinzþ
Xl¼Lþ1

l¼L�1

l
�l

�t
sin½ðl�Mq0Þz�Ma�

 !�
;

(15)

where ŝ ¼ ðr=qÞdq=dr and �0 ¼ ad�=dr.5,18 Other parameters

for the standard LHD configuration are q0¼ 1.9, ŝ ¼ �0:85,

gi¼ 3, R/Ln¼ 3.33, Ti¼ Te, �00¼ 0, �t¼ 0.087, and

ð�L�1;�L;�Lþ1Þ¼ �tð�0:28;0:91;0Þ. The normalizations used

in our simulations are ðtvTi=Ln; k?qi; vk=vTs; FMsv3
Ts=n0,

dfsLnv3
Ts=ðqin0Þ;/eLn=ðqiTiÞ;AkLn=ðq2

i B0Þ, ms=mi; Ts=Ti;

n=n0; B=B0;qs=e;kDi=qi;�sLn=vTsÞ !ðt;k?;vk;FMs;dfs;/;Ak;

ms;Ts, n, B, qs, kDi, �s), where kDi¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ti=ð4pe2n0Þ

p
and

vTs¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Ts=ms

p
, and the leading order of Larmor radius

qTi¼vTi/Xi is written as qi. Ion and electron temperatures are
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set to be equal Ti¼Te in the following simulations, so that

bi¼be¼b/2, where bi¼4pn0Ti=B2
0. In order to avoid electron

temperature gradient instabilities at high wavenumber, the

electron temperature gradient is set to be zero ge¼0 in our

simulations. Turbulent transport due to the KBM at b¼1.7%

is investigated and is compared with the ITG turbulence at

b¼0.2%. In the simulations, the number of Fourier modes is

(144, 636) with (kx,minqi, ky,minqi)¼(0.077, 0.058) for KBM

and (kx,minqi, ky,minqi)¼(0.12, 0.046) for ITG, and 256, 64,

and 32 grid points are distributed in the z, vks, and l direc-

tion. The resolution in the radial direction is required to cap-

ture an elongated mode structure along the magnetic field

line by taking into account the magnetic shear that causes

high-radial wavenumber Fourier modes. The resolution in

the velocity space is required to reduce numerical error, so

that numerical solutions satisfy the entropy balance equation.

The electron-ion collision is neglected, and the collision fre-

quency and the Debye length are set to be �i¼2�10�3,

�e¼2�10�3, and kDi/qi¼0, respectively.

III. LINEAR ANALYSIS

Linear growth rates of instabilities in the model configu-

ration of standard LHD are plotted in Fig. 1(a) as a function

of ky. The ITG mode is unstable for low b values 0.2% and

0.4%, and it has a peak of the growth rate around kyqi¼ 0.4.

The growth rate decreases with b. When the beta is larger

than 1.2%, the KBM appears. The peak of the growth rate

curve is located around kyqi¼ 0.18. Figure 1(b) shows the ra-

dial mode number dependence of the growth rate of instabil-

ity. The ITG mode is the most unstable at kxqi¼ 0, while the

KBM is the most unstable around kxqi¼ 0.3, i.e., it has finite

radial wavenumber in the flux tube coordinate. This is

clearly shown by a color map of the linear growth rate of the

KBM in the Fourier space (kx, ky) in Fig. 1(c). This implies

that the most unstable KBM in the LHD plasma has an

inclined mode structure with respect to the mid-plane of a

torus, while the ITG mode has horizontal mode structure.

Figure 2 shows the mode structure of the ITG instability and

the KBM on the (x, y) plane at z¼ 0. The inclined structure

is clearly shown in the electrostatic potential profile. We

remark that the inclined mode structure of the KBM is in

contrast with that of KBMs in tokamaks.13

IV. TURBULENT TRANSPORT

Nonlinear simulations of the ITG turbulence with

b¼ 0.2% and of the KBM turbulence with b¼ 1.7% in the

FIG. 1. Growth rates as functions of (a) kyqi and of (b) kxqi for the standard

configuration of LHD with ge¼ 0, and (c) a color map of the linear growth

rate of the KBM in the Fourier space (kx, ky). The lines for b¼ 0.2% and

0.4% (b¼ 1.7% and b¼ 1.8%) show ITG modes (KBMs).

FIG. 2. Color map of electrostatic potential / of ITG with b¼ 0.2% and

KBM with b¼ 1.7% in the linear evolution on z¼ 0. The unity of color is

arbitrary.
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model configuration of standard LHD are carried out. It is

remarked that the growth rates of the most unstable KBM

with b¼ 1.7% and of ITG instability with b¼ 0.2% are

similar as shown in Fig. 1. Figure 3 shows color maps of

electrostatic potential / on z¼ 0. The potential profile shows

that the zonal flow is regulating the ITG turbulence that

extends to the longitudinal direction in the (x, y)-plane at

t¼ 180Ln/vTi. On the other hand, the potential profile of the

KBM at t¼ 130 is the superposition of the inclined stripes

that are perturbed by small scale fluctuation. Figure 4 shows

three-dimensional structure of the electrostatic potential in

(x, y, z). The inclined stripes of the KBM turbulence are

elongated along the magnetic field line z and have a peak at

finite z. The peak is located around the minimum of magnetic

drift frequency Eq. (15). On the other hand, the longitudinal

stripes of ITG turbulence are not so elongated along the field

line and are small at z¼6p/2.

Figure 5 shows the time evolution of square of electro-

static potential for (a) the ITG mode with b¼ 0.2% and (b)

the KBM with b¼ 1.7%. In Fig. 5(a), the evolution of zonal

flow potential ky¼ 0, the most unstable ITG mode

kyqi¼ 0.37 and a dominant ITG mode in the steady state

kyqi¼ 0.32 are shown. At the beginning, the ITG mode with

kyqi¼ 0.37 grows and produces zonal flows, and then it is

saturated around t¼ 70Ln/vTi. The amplitude of the most

unstable ITG mode with kyqi¼ 0.37 decreases after the

growth of zonal flow, and the amplitudes of a dominant ITG

mode with kyqi¼ 0.32 and of the zonal flow are comparable

in a statistically steady state.

For the high-beta case b¼ 1.7%, the KBM with

kyqi¼ 0.17 grows exponentially at the beginning, then it is

saturated around t¼ 80Ln/vTi (Fig. 5(b)). Next, kyqi¼ 0.12

mode continues to grow and dominates, and then the system

reaches a statistical steady state around t¼ 130. The ampli-

tude of zonal flow potential k¼ 0 is an order of magnitude

smaller than the dominant KBM with kyqi¼ 0.12 in the

steady state. The weak zonal flow in the KBM turbulence is

in contrast with the strong zonal flow in the ITG turbulence.

Thus, the KBM turbulence is not regulated by zonal flows, in

contrast to the ITG turbulence that is regulated by zonal

flows.

The spectrum of the electrostatic potential hj/kj2i for

the KBM turbulence with b¼ 1.7% and the ITG turbulence

with b¼ 0.2% are plotted as a function of ky in Fig. 6.

FIG. 3. Color map of / in the steady state of the ITG turbulence with

b¼ 0.2% and the KBM turbulence with b¼ 1.7% on z¼ 0.

FIG. 4. Three-dimensional color map of / in the steady state of the ITG turbulence with b¼ 0.2% and the KBM turbulence with b¼ 1.7%.
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The spectrum of KBM (ITG) turbulence is averaged from

t¼ 150 to 220 (from t¼ 120 to 350). The spectrum of the

KBM has a sharp peak at the dominant mode kyqi¼ 0.12,

and the zonal component ky¼ 0 and other modes are much

smaller than the dominant mode. On the other hand, the

spectrum of the ITG widely spreads in ky compared with that

of KBM, and the amplitude of the zonal component is com-

parable with those of the dominant ITG modes.

Figure 7 shows the time history of (a) the energy flux

Qs ¼ Hs þ 5
2

TsCs and (b) the particle flux Cs. For the ITG

turbulence, the ion energy flux Qion becomes large as the

ITG mode grows, and then it is in a steady state after

t¼ 80Ln/vTi (Fig. 7(a)). The ion and electron particle fluxes,

Cion and Cele, are the same in Fig. 7(b), because of the Poisson

equation and Ampere’s law.19 Table I summarizes the time

averaged fluxes due to ITG turbulence, where the average is

made from tvTi/Ln¼ 90 to 450. The contribution of convective

part 5Cion/2 to the energy flux Qion is comparable with that of

the turbulent diffusion heat flux part Hion for the ions. The

transports due to the magnetic perturbation causing

magnetic-flutter are much smaller than those by the electro-

static perturbation. In addition, the ion heat transport by the

magnetic perturbation is small negative, and thus the magnetic

perturbations of ITG turbulence have small pinch effects.13

FIG. 6. Spectrum of electrostatic potential hj/kj2i.

FIG. 7. Time history of (a) energy flux Qs and (b) particle flux C¼Cion

¼Cele for the ITG with b¼ 0.2% and the KBM with b¼ 1.7%.

TABLE I. Heat Hs ½TivTiq2
i =L2

n�, particle ½Cs ½n0vTiq2
i =L2

n�, and energy Qs ¼
Hs þ 5

2
TsCs ½n0TivTiq2

i =L2
n� fluxes of the ITG turbulence at b ¼ 0.2% and of

the KBM turbulence at b ¼ 1.7% in the model configuration of standard

LHD plasma with ge ¼ 0 by electrostatic perturbation, magnetic perturba-

tion, and the sum of them.

ITG at b ¼ 0.2%

Hion Hele Cion ¼ Cele Qion Qele

Electrostatic 2.94 �1.04 0.82 4.98 1.0

Magnetic �0.01 0.01 �0.02 �0.05 �0.03

Total 2.93 �1.03 0.8 4.93 0.97

KBM at b ¼ 1.7%

Hion Hele Cion ¼ Cele Qion Qele

Electrostatic 1.94 �0.45 0.37 2.86 0.47

Magnetic �0.03 0.22 0.00 �0.02 0.23

Total 1.91 �0.23 0.37 2.84 0.70

Unit TivTiq2
i =L2

n n0vTiq2
i =L2

n n0TivTiq2
i =L2

n

FIG. 5. Time evolution of square of electrostatic potential hj/kj2i of (a) ITG

((b) KBM) turbulence in the standard LHD for zonal potential ky¼ 0, the

most unstable kyqi¼ 0.37 (kyqi¼ 0.17), and a dominant ITG (KBM) mode in

the steady state of the standard LHD kyqi¼ 0.32 (kyqi¼ 0.12) with b¼ 0.2%

(1.7%).
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For the KBM turbulence in Fig. 7(a), the ion energy flux

Qion starts to get saturated around t¼ 80 with Qion < 0:5Ti

vTiq2
i =L2

n which is much smaller than the flux by ITG turbu-

lence. This is related to the saturation of kyqi¼ 0.17 mode in

Fig. 5(b). Then, the flux Qion grows again because of the

growth of kyqi¼ 0.12 mode, and eventually the energy flux

(Qion � 3TivTiq2
i =L2

n) becomes comparable to that due to the

ITG turbulence. The electron energy flux Qele caused by the

KBM is also comparable with that by the ITG turbulence in

the steady state. The ion particle flux Cion evolves in the sim-

ilar way as the energy flux (Fig. 7(b)). It is saturated at a

small level around t¼ 80, then grows again and eventually

reaches a steady state. The level of Cion is similar to that of

the ITG turbulence in the steady state. These fluxes caused

by the KBM turbulence are summarized in Table I, where

the average is made from tvTi/Ln¼ 120 to 220. The ion

energy and particle fluxes by the ITG turbulence with

b¼ 0.2% are larger than those by the KBM turbulence with

b¼ 1.7% (Fig. 7 and Table I), while the amplitude of the

KBM turbulence is much larger than that of the ITG turbu-

lence (Fig. 5). In addition, both of zonal flow amplitude and

the transport are larger in the ITG turbulence than in the

KBM turbulence.

Here, transfer of fluctuations caused by turbulence in the

phase space is studied by means of the entropy balance equa-

tion (5). Figure 8 shows the time evolution of several groups

of terms in the entropy balance equation (5): the sum of time

derivative terms dðdSi þ dSe þWes þWemÞ=dt, the sum of

transport terms Hs/LTsþCsTs/Lps, and the collisional dissipa-

tion term Ds, for (a) the ITG turbulence with b¼ 0.2% and

(b) the KBM turbulence with b¼ 1.7%. The time-derivative

terms become small when a steady state is realized. In the

steady state, the sum of ion heat and particle transport terms,

Hi/LTiþCiTi/Lpi, almost balances with the sum of ion and

electron dissipation terms DiþDe for the ITG turbulence

(Fig. 8(a)). The evolution of them for the KBM turbulence is

similar to that for the ITG turbulence (Fig. 8(b)). The short

period oscillations in the time derivative and the transport

terms are caused by a nonlinearly excited linearly stable ki-

netic Alfv�en wave.

V. SATURATION PROCESS OF KBM TURBULENCE

In Sec. V, the zonal flows in the KBM turbulence are

weak. Here, we investigate the mechanism of the saturation

of KBM through the nonlinear mode coupling in weak zonal

flow by evaluating the nonlinear entropy transfer in the

Fourier mode space.

The process of saturation of instabilities is studied by

evaluating the entropy transfer function

Tðk; k0; k00Þ ¼
X

s

Tsðk; k0; k00Þ; (16)

where

Tsðk; k0; k00Þ ¼ Re

�ð
d3v

c

B0

Tshsk

2FMs
dk;�k0�k00b � k0?

� k?
00ðvsk0hsk00 � hsk0vsk00 Þ

�
; (17)

where hsk ¼ dfsk þ qs

Ts
/kJ0sFMs is the non-adiabatic part of

the perturbed part of gyro-center distribution function and

vsk ¼ ð/k � vkAkk=cÞJ0s is the generalized potential. This is

an extension to an electromagnetic version from the electro-

static one in Ref. 15. The transfer function satisfies

the detailed balance equation, Tðk; k0; k00Þ þ Tðk0; k00; kÞ
þTðk00; k; k0Þ ¼ 0 and Tðk; k0; k00Þ ¼ Tðk; k00; k0Þ ¼ T
ð�k;�k0;�k00Þ. The entropy balance equation for each

Fourier mode is written by means of the transfer function as

d

dt

X
s

dSs;k þWes;k þWem;k

� �

¼
X

s

Ts;k þ
Hs;k

LTs
þ TsCs;k

Lps
þ Ds;k

� �
; (18)

where

Ts;k ¼
X
k0;k00

Tsðk; k0; k00Þ: (19)

FIG. 8. Time evolution of each term in the entropy balance equation for (a)

the ITG with b¼ 0.2% and (b) the KBM with b¼ 1.7%.
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A. Mutual shearing by oppositely inclined convection
cells

As we have seen in Fig. 5, the KBM with (kxqi, kyqi)

¼ (0.31, 0.12) dominates in the steady state around

t¼ 170Ln/vTi, we investigate the process of transfer of en-

tropy/ free-energy from this mode around t¼ 170. Figure 9

shows the entropy transfer function Tðk; k0; k00Þ which is aver-

aged from t¼ 150 to 190. Figure 10 shows diagrams of en-

tropy transfer caused by triad nonlinear mode interaction in

the Fourier space. Figure 10(a) shows an element of the dia-

gram, which is a triangle with the vertexes connected to three

lines representing three energy transfer functions of the mode

at the other end of the line, Tðk; k0; k00Þ; Tðk0; k00; kÞ, and

Tðk00; k; k0Þ, where Tðk; k0; k00Þ þ Tðk0; k00; kÞ þ Tðk00; k; k0Þ
¼ 0. The arrows represent the signs of them, which are

Tðk; k0; k00Þ > 0; Tðk0; k00; kÞ < 0, and Tðk00; k; k0Þ < 0 in the

figure as an example. Figure 10(b) shows the diagram of the

entropy transfer for the KBM turbulence in the Fourier space.

The blue arrows show the transfer of the entropy/free-energy

from KBM to linearly stable modes through zonal flow

shear, and the red arrows show the transfer through KBM/

inclined-mode shear. It is remarked that a mode with (kx, ky)

is the same as the complex conjugate of the mode with

(�kx, �ky). Figure 10(c) shows the diagram for the KBM tur-

bulence. The black points represent the locations of Fourier

FIG. 9. Entropy transfer function Tðk; k0; k00Þ averaged from t¼ 170 to 180 for the KBM turbulence with b¼ 1.7% in the standard LHD for (a) (kxqi,

kyqi)¼ (0.31, 0.12), (b) (kxqi, kyqi)¼ (� 0.62, 0), and (c) (kxqi, kyqi)¼ (0, �0.23).

FIG. 10. Diagrams of nonlinear en-

tropy transfer in the Fourier space: (a)

an element of the diagram, which is a

triangle with the vertexes connected to

three lines representing three energy

transfer functions of the mode at the

other end of the line, Tðk; k0; k00Þ;
Tðk0; k00; kÞ, and Tðk00; k; k0Þ, where

Tðk;k0;k00Þ þTðk0;k00;kÞþTðk00;k;k0Þ
¼ 0 and the arrows represent the signs

of them, which are Tðk;k0;k00Þ> 0;
Tðk0;k00;kÞ< 0 and Tðk00;k;k0Þ< 0 in

the figure as an example, (b) the dia-

gram of the entropy transfer for the

KBM turbulence in the Fourier space:

blue arrows show the transfer of the

entropy/free-energy from KBM to line-

arly stable modes through zonal flow

shear and red arrows show the transfer

through KBM/inclined-mode shear, (c)

the diagram for the KBM turbulence

where black points represent the loca-

tions of Fourier modes appearing in

the diagram (b), and ZF ! and KBM

! show the scatter by the zonal flow

shear and KBM/inclined-mode shear

and are corresponding to arrows from

zonal flow and KBM in (b).
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modes appearing in the diagram in Fig. 10(b), and “ZF !”

and “KBM !” show the scatter by the zonal flow shear and

KBM/inclined-mode shear, respectively.

In Fig. 9(a), the map of Tðk; k0; k00Þ for k¼ (kxqi, kyqi)

¼ (0.31, 0.12) mode in k0 space shows that there are strong

negative points at ðk0xqi; k
0
yqiÞ ¼ ð0:31;�0:12Þ and (�0.62,

0), and thus the k mode loses the entropy via nonlinear triad

mode interactions with ðk0xqi; k
0
yqiÞ ¼ ð0:31;�0:12Þ and a

zonal mode ðkx
00qi; ky

00qiÞ ¼ ð�0:62; 0Þ. This transfer is indi-

cated by the black arrow pointing to the left from the box of

(0.31, 0.12) in Fig. 10(b) with the number of 0.15 showing

the amount of the transfer. It is remarked k ¼ �k0 � k00 and

that the entropy transfer function is symmetric for k0 and k00.
Next, the transfer functions of the zonal mode (�0.62, 0) are

examined. Figure 9(b) shows the transfer function for the

zonal mode (kxqi, kyqi)¼ (�0.62, 0). There are two large

positive points at ðk0xqi; k
0
yqiÞ ¼ ð0:31; 0:12Þ and (0.31,

�0.12). Thus, the free-energy of the dominant KBMs (kxqi,

kyqi)¼ (0.31, 0.12) and (0.31, �0.12) is transferred into the

zonal mode (kxqi, kyqi)¼ (�0.62, 0) resulting in the zonal

flow component indicated by the black downward arrow

between the boxes (0.31, 0.12) and (0.31, �0.12) with the

amount of the transfer of 0.3 in Fig. 10(b). Although there is

a strong transfer into the zonal component (�0.62, 0), the

zonal flow is very weak as shown in Figs. 5(b) and 6. Figure

9(a) also shows strong negative points at ðk0xqi; k
0
yqiÞ

¼ ð�0:31; 0:12Þ and (0, �0.23), and thus the entropy is trans-

ferred into ðk0xqi; k
0
yqiÞ ¼ ð�0:31; 0:12Þ and ðkx

00qi; ky
00qiÞ

¼ ð0;�0:23Þ. The transfer is indicated by the red leftward

arrow from the box (0.31, 0.12) with the value of 0.05 in

Fig. 10(a). Figure 9(c) shows the transfer function of (kxqi, kyqi)

¼ (0, 0.23). There are two large positive points at ðk0xqi; k
0
yqiÞ

¼ ð0:31; 0:12Þ and (0.31, �0.12), and thus the entropy/free-e-

nergy of the dominant KBMs is also transferred into the (0,

�0.23) mode as shown by the red arrow towards (0, �0.23)

with the amount of the transfer 0.09. The transfer implies that

oppositely inclined KBMs (kxqi, kyqi) ¼ (0.31, 0.12) and

(�0.31, 0.12) play an important role in their saturation.

Figure 10 summarizes the entropy transfer described in

Fig. 9 and the transfer of other modes. There are two main

directions of scatter of the entropy/free-energy from the

dominant KBM to the high wavenumber region in the

Fourier space (kx, ky): one is the direction along the red

arrows with “KBM/inclined-mode shear” and the other is the

direction along the blue arrows with “zonal flow shear” in

Fig. 10(b). The former is caused by a dominant KBM (kxqi,

kyqi)¼ (�0.31, 0.12) and is in the direction indicated by red

arrows in Fig. 10(c). It causes the transfer in this inclined

direction and subsequently transforms the entropy from the

other dominant KBM (kxqi, kyqi)¼ (0.31, 0.12) to (0, �0.23)

and then from (0, �0.23) to (�0.31, 0.35), and to higher

Fourier modes, which are linearly stable as shown in the

color map in Fig. 1(c). This subsequent scattering is inter-

preted as the shearing of KBM by the inclined mode. The

inclined mode is also a dominant KBM, and thus the scatter

in the inclined direction implies the saturation of KBMs by

mutual shearing. The other main scatter is in the horizontal

direction indicated by the blue arrows and is caused by the

zonal component (kxqi, kyqi)¼ (0.62, 0) in Fig. 10(c).

The entropy/free-energy of the dominant KBM (�0.31,0.12)

is transferred into (�0.93, 0.12) and then from (�0.93, 0.12)

to (1.5, 0.12) as shown in Figs. 10(b) and 10(c). This scatter

is caused by the zonal flow shear. The transfer by weak zonal

flow might be related to that in Ref. 22 and would be studied

in detail in our future work. The quantitative value of the

transfer function of the triad mode interaction is described

by the numbers along the red arrows in Fig. 10(b). It is

remarked that the interaction between two dominant KBMs,

(0.31, 0.12) and (�0.31, 0.12) includes the scatter by the

zonal component; however, it is much smaller than the direct

interaction between the KBMs. The amount of scatter by the

zonal flow shear shown by a series of blue arrows with num-

bers 0.01, 0.04, 0.0005, and 0.00014 in Fig. 10(b) is smaller

than that by the inclined KBM scatter shown by a series of

red arrows with numbers 0.05, 0.09, 0.04, 0.04, 0.02, and

0.02 in Fig. 10(b). Hence, the growth of KBM is saturated by

the nonlinear interactions of oppositely inclined convection

cells through mutual shearing as well as the zonal flow. The

color map of electrostatic potential in Fig. 3 shows the con-

vection cells of the dominant KBMs.

B. Nonlinear interaction caused by an extended
structure along the magnetic field line

In Subsection V A, it is shown that the saturation of

KBM is caused by shearing between oppositely inclined con-

vection cells and by zonal flow. In addition to this dominant

mechanism, a saturation can be affected by nonlinear self-

interaction due to an elongated mode structure along the

magnetic field line.

In a flux tube model, we can describe a perturbation

extending over jhj ¼ 6p by connecting Fourier modes

(kx, ky) and ðkx þ 2pŝky; kyÞ through the boundary conditions

by taking into account the magnetic shear, where ŝ is the

magnetic shear.17 In this simulation (kxqi, kyqi)¼ (0.31,

0.12) mode is connected to (�0.31, 0.12) mode at z¼p.

When we solve a linearized equation in the flux tube geome-

try, the calculation of these connected modes gives exactly

the same result as the calculation of (kxqi, kyqi) ¼ (0.31,

0.12) mode in the simulation box �2p< z� 2p. However, in

the nonlinear evolution, the (�0.31, 0.12) mode can interact

with the (0.31, 0.12) mode through nonlinear Fourier mode

coupling. In fact, this interaction contributes the saturation

of the growth of (0.31, 0.12) KBM. When the box size in the

y-direction is doubled, the oppositely inclined KBM (kxqi,

kyqi)¼ (�0.31, 0.15) and the connected mode (�0.46, 0.15)

mode are different, and the transfer function of the dominant

KBM (0.31, 0.15) shows that their contributions to the satu-

ration are comparable (Fig. 11). Hence, the KBM is saturated

not only by the shearing of oppositely inclined convection

cells and zonal flow shear but also by the self-interaction due

to the elongated mode structure along the magnetic field line

in this simulation. The interaction caused by the elongated

structure can be avoided by extending the simulation box

along the field line, i.e., in z-direction, from [�p : p] to

[�Nhp : Nhp] with an integer Nh	 2. The z-extended box

may be more numerically efficient than a y-extended box.

The extension of the simulation box may affect the saturation
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level of turbulence. Simulations with the extended box along

the field line are retained in our future work.

VI. SUMMARY

Electromagnetic turbulence in finite-beta LHD plasmas

is studied by means of gyrokinetic simulations. The study

shows common features to those found in gyrokinetic simu-

lations of finite beta tokamaks such as the stabilization of

ITG modes, the destabilization of KBMs, and weak zonal

flows in KBM turbulence.13 The turbulent transport due to

the ITG in LHD plasmas with b¼ 0.2% is regulated by zonal

flows, even in the presence of electromagnetic perturbations.

The contribution of convective part to the energy flux is

comparable with that of the turbulent diffusive heat flux part,

because of the finite density gradient of the model configura-

tion of LHD. For a small density gradient that is often

observed in LHD, the contribution of the convective part can

be different from the results obtained here. In addition, mag-

netic perturbations have small pinch effects on the energy

and the particle fluxes.

A new mechanism of saturation process of KBM turbu-

lence in LHD is presented by analysis of nonlinear entropy

transfer. The analysis has revealed that the growth of KBM

is saturated by nonlinear interactions of oppositely inclined

convection cells with mutual shearing as well as by the zonal

flow. It is expected that the KBMs have inclined mode struc-

ture and are saturated through the new mechanism, when

particle trapping by helical ripples is significant, because the

bounce-average of magnetic drift velocity has finite radial

component in the bounce-average of magnetic drift fre-

quency Eq. (15) to destabilize Fourier modes with finite ra-

dial wavenumber. The new mechanism may also cause

saturation of turbulence in finite-beta tokamaks in the pres-

ence of three-dimensionality such as toroidal ripples and res-

onant magnetic perturbation (RMP). In the steady state, the

amplitudes of energy and particle fluxes due to KBM at

b¼ 1.7% are similar to those caused by the ITG turbulence

at b¼ 0.2%, even though the amplitude of the KBM turbu-

lence is larger than that of the ITG turbulence. The spectrum

of electrostatic potential for the KBM turbulence is sharply

peaked compared with that for the ITG turbulence.

It is found that a self-interaction produced by the elon-

gated mode structure along the magnetic field line also plays

a role in the process of saturation of KBM. The elongated

structure is due to the electron dynamics along the field line,

so it may appear in KBMs and ITG modes in general toroidal

systems. The interaction can be avoided by extending the

simulation box along the field line, i.e., in z-direction, from

[�p : p] to [�Nhp : Nhp] with an integer Nh or, for tokamaks,

by using a new flux tube model.20 The new flux tube model

consists of a set of flux tubes aligned along the magnetic

field line. The tubes are connected at their ends like cars in a

train, so it will be referred as flux tube train model.

Perturbations of turbulence in different tubes interact only

through the boundary conditions, which take into account

the magnetic shear, at the each end of the tubes. The model

gives the same turbulent transport as the original one with

increasing Nh, and the new one is more efficient numerically,

because it requires smaller radial resolution than the original

one. It is remarked that the interaction due to the elongated

mode structure is a dominant cause of a saturation of KBM

in a tokamak when Nh¼ 1,21 and that removing the interac-

tion by extending the simulation domain in z-direction

causes much higher level of turbulence. This will be reported

in a separate paper.
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