§5. Measurement Method of Thoron Exhalation Rate from Wall

Okamoto, K., Iida, T. (Dept. Nucl. Sch. Eng., Nagoya Univ.) Obayashi, H., Yamanishi, H.

We have studied a new type of passive monitors with solid state nuclear track detector (SSNTD). Figure 1 shows the passive integrating ²²²Rn and ²²⁰Rn cup monitors. To control ²²²Rn or ²²⁰Rn exchange rate, we have made a 5 mm filtered opening for ²²²Rn monitor and four openings of diameter 20 mm for ²²⁰Rn monitor.

Calibrations of the ²²²Rn monitors were performed in high ²²²Rn concentration air. The calibration factor was derived to be (4.17 ± 0.24) X10⁻³ tracks·cm⁻²(Bq·m⁻³·h)⁻¹. Calibration experiment of the ²²⁰Rn monitors is quite difficult because of the short half-life of ²²⁰Rn (55.6 s). Therefore, the calibration factors of both monitors have been calculated by using molecular diffusion model. The calculated factors were 4.71X10⁻³ and 0.62X10⁻³tracks·cm⁻² (Bq·m⁻³·h)⁻¹ for ²²²Rn and ²²⁰Rn monitors, respectively.

The ²²⁰Rn concentrations have been measured with six pairs of cup monitors in the various dwellings. The results in a dwelling with soil wall are shown in Fig. 2. The ²²⁰Rn concentration at a distance of X m from wall could be expressed by following equation¹⁾

$$Q(X) = \frac{E_{Tn}}{\sqrt{\lambda_{Tn} \cdot D}} \exp(-\sqrt{\lambda_{Tn}/D}) X, \qquad (1)$$

where Q(X) is the ²²⁰Rn concentration at a distance of X m from wall in Bq·m⁻³, E_{Tn} is the ²²⁰Rn exhalation rate from wall in Bq·m⁻²·s⁻¹, λ_{Tn} is the ²²⁰Rn decay rate in h⁻¹, D is the effective diffusion coefficient of ²²⁰Rn in air in m²·s⁻¹, and X is the distance from wall in m.

Fig. 2 The distributions of ²²⁰Rn concentrations indoors.

The values of E_{Tn} and D have been determined by using the least squares method. The calculated values of E_{Tn} ranged from 0.8 to 6.4 $m^2 \cdot s^{-1}$ in the dwellings with soil wall. The exhalation rates from soil walls show more than ten times as much as those from brick and heavy concrete ranging from 0.01 to 0.11 Bq $m^{-2} \cdot s^{-1}$. The annual mean effective dose equivalent due to ²²⁰Rn progeny was expected to be 0.67 mSv·y⁻¹ in the dwellings with soil wall²⁾.

Since the half-life of 222 Rn is 3.8235 d, we could not use the same procedure for measuring the 222 Rn exhalation rate from wall. Then, we thought a new equipment that consists of three boxes between which filters are positioned to make the difference of 222 Rn concentrations. When we set the equipment on the wall, we could obtain the 222 Rn exhalation rate from the differences.

REFERENCES

- 1) Katase, A. et al.: Health Phys. 54(1988)283.
- Guo, Q. et al: J. Nucl. Sci. Technol. (in printing).

294