§ 21. Interaction of Toroidicity Induced Alfvén Eigenmodes on Energetic Particles on LHD

Osakabe, M., Yamamoto, S. ${ }^{1}$, Takeiri, Y., Toi, K., Kanako, O.

${ }^{1}$ Kyoto University

During the high-beta experiments with the magnetic filed of $\mathrm{Bt}=0.5 \sim 0.75$ [T], the fast change of energetic neutral particles being associated with MHD burst signals were observed on the tangential Neutral Particle Analyzer (NPA). The signals of fast neutral particles of around $130-\mathrm{keV}$ were increased when the MHD-bursts were observed. The signal increase of slower neutral particles occurred after the increase of the fast particles. This time delay was coming from the slowing-down time of the circulating particle whose orbit was changed with the interaction of MHD-bursts .

Figure 1(a) shows a typical waveform of MIRNOV-coil signal. The toroidal mode number of this burst is identified to be $n=1$ or 2. In Fig.1(b), the peak position of the increased neutral flux are plotted with open-circles at each energy channel of the NPA. Lines in the figure show the exponential fitted curve of the peak position, which has a $1 / \mathrm{e}$-time of about $4.3[\mathrm{~ms}]$. Comparing this decay time to the slowing-down time of particles whose orbits are tangent to the NPA line of sight, the increased particles are considered to be circulating on the orbit around $\rho=0.55$. For this orbit, the particle presence probability, which is evaluated from orbit-following calcuation, is shown in Fig.2(a), where "the particle presence probability" is defined by the ratio of "the time for a particle staying in a particular region of a plasma" to "the total amount of time being followed" in the orbit calculation. The shear Alfven-spectra are also shown in Fig.2(b). In these figures, it is sohwn that the peak of the particle presence probability distribution is
locating at the gap for the TAE of $n=2$ and $m=3$. This shows that the energetic particles are influenced by TAE and those particle would change its orbit to a orbit which has the maximum particle presence probability around the TAE-gap location.

Fig. 1 (a) A typical wave form of a MIRNOV burst signal being associated with NPA flux increase. (b) the peak position of increased neutral flux at each energy channel of a tangential NPA(open circles). Error-bars indicate the sampling duration time of the measurement. The solid line shows the exponential fitted curve of the peak positions.

Fig. 2 (a) Radial Distribution of Particle Presence Probability of the orbit which is circulating around $\rho=0.55$. (b) Shear-Alfven Spectra for $n=2$ at $t=0.94$.

