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A novel method to obtain the full neoclassical transport matrix for general toroidal plasmas by using
the solution of the linearized drift kinetic equation with the pitch-angle-scattering collision operator
is shown. In this method, the neoclassical coefficients for both poloidal and toroidal viscosities in
toroidal helical systems can be obtained, and the neoclassical transport coefficients for the radial
particle and heat fluxes and the bootstrap current with the nondiagonal coupling between
unlike-species particles are derived from combining the viscosity-flow relations, the friction-flow
relations, and the parallel momentum balance equations. Since the collisional momentum
conservation is properly retained, the well-known intrinsic ambipolar condition of the neoclassical
particle fluxes in symmetric systems is recovered. Thus, these resultant neoclassical diffusion and
viscosity coefficients are applicable to evaluating accurately how the neoclassical transport in
quasi-symmetric toroidal systems deviates from that in exactly symmetric systems. ©2002
American Institute of Physics.@DOI: 10.1063/1.1512917#
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I. INTRODUCTION

Neoclassical transport theory1–3 describes diffusion pro-
cesses caused by binary Coulomb collisions between cha
particles in magnetically confined plasmas. In most fus
plasma experiments, observed particle and heat fluxes ac
magnetic surfaces are dominated not by neoclassical tr
port but by turbulent or anomalous transport,4 although the
neoclassical transport theory is still useful for predicti
transport fluxes tangential to magnetic surfaces such as
loidal and toroidal flows and bootstrap currents. Especia
for nonaxisymmetric systems, neoclassical analyses are
portant because neoclassical transport fluxes due to part
trapped in helical ripples5–8 are expected to be significantl
large for high temperature and play a key role in determin
the radial electric field under the ambipolar-diffusio
condition.9 Recently, quasi-symmetric toroidal systems su
as quasi-axisymmetric systems are attracting much atten
as an advanced concept of helical devices, in which the n
classical ripple transport and the neoclassical visco
against flows in the direction of symmetry are nearly su
pressed by optimizing the helical configuration so as to m
the magnetic field strength independent of a certain sym
try coordinate.10–12Thus, there are many demands for acc
rate and fast calculation of neoclassical quantities includ
the particle and heat diffusivities, the bootstrap-current co
ficients, and the viscosity coefficients for the poloidal a
toroidal flows.

The neoclassical transport coefficients are obtained f
solution of the drift kinetic equation.13,14 Because of com-
plexity of the magnetic geometry, calculation of the neocl

a!Electronic mail: sugama@nifs.ac.jp
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sical transport in helical systems often employs numer
methods.15–23The Drift Kinetic Equation Solver~DKES!19,20

is one of powerful numerical codes to directly solve the d
kinetic equation. However, we should note that, even in s
numerical calculations, approximated collision operat
such as the pitch-angle-scattering~or Lorentz! collision
model are generally used instead of the full Landau collis
term.24 By using this collision model, perturbed distributio
functions of unlike species and of different kinetic energ
can be solved independently, and therefore the neoclas
transport coefficients can quickly be calculated. Howev
since such simple collision models neglect the field parti
collision part and break the collisional momentum conser
tion, the resultant transport coefficients neither contain
nondiagonal part connecting fluxes and forces of unlike s
cies, nor recover the well-known intrinsic ambipolarity of th
radial particle fluxes in the symmetric limit.1–3 These errors
seem to be a serious problem, especially when using
numerical results to show how the neoclassical transpor
designed quasi-symmetric configurations differ from that
exactly symmetric systems. In the present work, it is sho
how to obtain the neoclassical transport coefficients in g
eral toroidal systems including the coupling effects betwe
unlike-species particles as well as the collisional moment
conservation.

Here, we follow the basic idea of the moment method
Hirshman and Sigmar2 that, in order to derive the neoclass
cal transport coefficients, the fluid momentum balance eq
tions and the friction-flow relations, in which the collision
momentum conservation is already taken into account,
used together with the viscosity-flow relations obtained fro
the solution of the drift kinetic equation. Since the test p
ticle portion of the collision operator dominates over the fie
7 © 2002 American Institute of Physics
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particle portion for thel 52 spherical harmonic perturbation
of the distribution functions,2 it is more accurate to use th
solution of the drift kinetic equation with the pitch-angl
scattering collision model for derivation of the neoclassi
viscosity coefficients than for direct calculation of the ne
classical particle and thermal diffusivities, which are sign
cantly influenced by neglect of the field particle portion.
tokamaks, the neoclassical toroidal viscosity vanishes du
the axisymmetry, and analytical expressions of the viscos
flow relations are obtained for any collisionality in th
Pfirsch–Schlu¨ter, plateau, and banana regimes.2,3 Analytical
calculations of the the parallel viscosity coefficient in finit
aspect-ratio tokamaks are shown to be in good agreem
with numerical results.25,26 In general toroidal systems wit
no symmetry, we need to calculate viscosities in both po
dal and toroidal directions, and these viscosity coefficie
are analytically derived for the Pfirsch–Schlu¨ter and plateau
regimes.27,28 However, for the banana regime, analytical fo
mulas are given only for the parallel viscosities.5,29–31 In
order to accurately calculate both poloidal and toroidal v
cosity coefficients in toroidal helical systems for low
collisionality regimes, we need to make use of numeri
solution of the drift kinetic solution as effectively as po
sible, and the present paper shows how to do that.

Taguchi also showed another method to calculate
neoclassical transport coefficients in nonaxisymmetric mu
species plasmas.32 He ingeniously used a momentum co
serving collision operator and its self-adjoint property to d
rive the particle and heat diffusivities and the bootstr
current coefficient. In addition to these transport coefficien
our method gives a useful recipe to obtain the neoclass
viscosity coefficients, which play an important role in det
mining plasma rotation profiles. Since our work follows
line of the moment method, it is more transparently co
nected or applicable to past theoretical studies of neoclas
transport in nonaxisymmetric systems5,27–31,33which are also
based on the moment method. Furthermore, in the pre
study, the validity of our procedures is satisfactorily verifi
by numerical examples, in which our results are compa
with analytical formulas on the parallel viscosity, the ripp
transport coefficient, and the geometrical factor of the bo
strap current in various collision frequency regimes. In t
sense, our work is a generalization of previous compara
studies between numerical and analytical evaluations of n
classical coefficients of viscosities and other fluxes
tokamaks25,26 to the case of nonaxisymmetric systems.

The rest of this work is organized as follows. In Sec.
we derive the linearized drift kinetic equation for the dist
bution functions with l 51 spherical harmonic part sub
tracted, based on which two types of conjugate pairs of n
classical fluxes and forces are specified. When we take
parallel flows and the radial gradients as thermodyna
forces, the parallel viscosities and the radial transport
regarded as fluxes conjugate to those forces. We can
consider the poloidal and toroidal viscosities to be flux
conjugate to the poloidal and toroidal flows as forces. T
inner product of these fluxes and forces represents the
tropy production rate associated with the neoclassical tra
port processes.33,34 In Sec. III, it is shown that the conjugat
Downloaded 03 Mar 2009 to 133.75.139.172. Redistribution subject to AIP
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pairs of fluxes and forces defined in Sec. II are related
each other by the Onsager-symmetric matrices.35 The poloi-
dal and toroidal viscosity coefficients are included as e
ments in one of the matrices. We find how to calculate th
matrices by using their relations to the monoenergetic dif
sion tensor obtained as an output of commonly used num
cal codes such as the DKES. Once these Onsager-symm
matrices are derived, all neoclassical transport coefficie
for the radial particle and heat fluxes and the bootstrap c
rent are immediately obtained. In Sec. IV, numerical e
amples of these procedures are shown and compared
several analytical predictions. Conclusions are given in S
V. For readers’ convenience, useful formulas and relati
for the Boozer36 and Hamada37 coordinates, the poloidal an
toroidal viscosity coefficients, and other neoclassical tra
port coefficients are written in Appendices A, B, and C, r
spectively. Also, the case of symmetric systems is descri
in Appendix D. Finally, Appendix E shows how to treat e
fects of theE3B drift on the neoclassical transport coeffi
cients.

II. CONJUGATE PAIRS OF NEOCLASSICAL FLUXES
AND FORCES

In general toroidal configurations, the magnetic field
written in terms of the flux coordinates (s,u,z) as

B5c8¹s3¹u1x8¹z3¹s5Bs¹s1Bu¹u1Bz¹z,
~1!

where u and z represent the poloidal and toroidal angle
respectively,s is an arbitrary label of a flux surface. Th
poloidal and toroidal fluxes are given by 2px(s)
5(2p)21*V(s)d

3xB•¹u and 2pc(s)5(2p)21*V(s)d
3xB

•¹z, respectively, whereV(s) is the volume enclosed by th
flux surface with the labels. The derivative with respect tos
is denoted by85d/ds so thatc85dc/ds and x85dx/ds.
The covariant radial, poloidal, and toroidal compone
of the magnetic field B are written as Bs[B•]x/]s
[AgB•(¹u3¹z), Bu[B•]x/]u[AgB•(¹z3¹s), and
Bz[B•]x/]z[AgB•(¹s3¹u), respectively, where
Ag[@¹s•(¹u3¹z)#21 represents the Jacobian for the c
ordinates (s,u,z). Here, we may regard (s,u,z) as either
Boozer,36 Hamada37 coordinates, or arbitrary other flux coo
dinates. Useful formulas for the Boozer and Hamada coo
nates are written in Appendix A, where it is also shown th
the symmetry condition for the magnetic field strength in t
Boozer coordinates is equivalent to that in the Hamada
ordinates.

The distribution function for the particle speciesa with
the massma and the chargeea is written as

f a5 f aMF11
ea

Ta
E l dl

B S BEi2
B2

^B2&
^BEi& D G1 f a1 , ~2!

where the local Maxwellian distribution function is repr
sented by f aM[p23/2navTa

23 exp(2xa
2) with the equili-

brium densityna , the temperatureTa , the thermal velocity
vTa[(2Ta /ma)1/2, and the normalized velocityxa[v/vTa .
Here, Ei[E•b (b[B/B: the unit vector tangential to
the magnetic field! is the parallel electric field,* ldl de-
notes the integral along the magnetic field line, a
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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^•&[rdurdzAg•/V8 with V8[rdurdzAg represents the
flux surface average. The neoclassical transport is cause
the deviationf a1 from the local Maxwellian. We should not
that the drift kinetic theory is concerned with the gyropha
averaged part of the distribution function and thatf a1 is re-
garded as a gyrophase-averaged function in the present w

The linearized drift kinetic equation is given by

Vi f a12Ca
L~ f a1!52vda•¹ f aM1

ea

Ta
v iB

^BEi&

^B2&
f aM , ~3!

where the operatorVi[v ib•¹ and the guiding center drif
velocity vda5(c/eaB)b3(mav i

2b•¹b1m¹B1ea¹F) are
used, andf a1 and f aM are regarded as functions of the phas
space variables (x,E,m) ~x: the particle’s position,E
[ 1

2mav21eaF: The particle’s energy;m[mav'2/2B: the
magnetic moment!. Here, the linearized collision operatorCa

L

is defined by2

Ca
L~ f a1!5(

b
@Cab~ f a1 , f bM!1Cab~ f aM , f b1!#, ~4!

whereCab represents the Landau collision operator for c
lisions between the speciesa andb.

Hereafter, we use (x,v,j) (j[v i /v) as the phase-spac
variables instead of (x,E,m). Then, the collisionless orbi
operatorVi is represented by

Vi5vjb•¹2
1

2
v~12j2!~b•¹ ln B!

]

]j
, ~5!

where the second term in the right-hand side is related to
magnetic mirror force. TheE3B and magnetic drifts are no
included inVi . A more general case including theE3B drift
operator is treated in Appendix E. Let us consider the exp
sion of an arbitrary functionF(x,v,j) by the Legendre poly-
nomialsPl(j) @P0(j)51,P1(j)5j,P2(j)5 3

2j
22 1

2,...# as

F~x,v,j!5(
l 50

`

F ( l )~x,v,j!,

F ( l )~x,v,j!5Pl~j!
2l 11

2 E
21

1

dhPl~h!F~x,v,h!. ~6!

The l 51 Legendre componentf a1
( l 51) of the distribution

function f a1 is associated with the parallel flows and is e
panded by the Laguerre polynomialsL j

(3/2)(xa
2) @L0

(3/2)(xa
2)

51,L1
(3/2)(xa

2)5 5
22xa

2 ,...# as

f a1
( l 51)[~v i /v !

3

2 E21

1

d~v i /v !~v i /v ! f a1

5
2

vTa
jxaFuia1S xa

22
5

2D 2

5

qia

pa
G f aM1 f a1

( l 51,j >2) ,

~7!

where the coefficients of the first and second Laguerre p
nomial components are given in terms of the parallel veloc
uia[na

21*d3v f a1v i and the parallel heat flowqia

[Ta*d3v f a1v i(xa
22 5

2), respectively, andf a1
( l 51,j >2) denotes

the sum of thej th Laguerre polynomial components withj
Downloaded 03 Mar 2009 to 133.75.139.172. Redistribution subject to AIP
by

-

rk.

-

-

e

n-

y-
y

>2. Integrating Eq.~3! multiplied by 1 and1
2mav2 over the

velocity space, we obtain the incompressibility conditions

¹•ua5¹•qa50, ~8!

whereua5uiab1u'a and qa5qiab1q'a with the diamag-
netic perpendicular flows

u'a5
cXa1

eaB
¹s3b,

q'a

pa
5

5

2

cXa2

eaB
¹s3b. ~9!

Here, the thermodynamic forcesXa1 andXa2 are defined by

Xa1[2
1

na

]pa

]s
2ea

]F

]s
, Xa2[2

]Ta

]s
, ~10!

respectively, where the pressurepa[naTa , the temperature
Ta , and the electrostatic potentialF are flux surface func-
tions independent ofu andz. ~Exactly speaking,¹•qa50 is
valid to the lowest order of the small mass ratiome /mi

!1.) Integrating the incompressibility conditions in Eq.~8!
gives the local parallel flows as

uia5
^uiaB&

^B2&
B1

cXa1

ea
Ũ,

2

5pa
qia5

2

5pa

^qiaB&

^B2&
B1

cXa2

ea
Ũ, ~11!

whereŨ is given as a solution of

B•¹S Ũ

B
D 5B3¹s•¹S 1

B2D , ^BŨ&50. ~12!

As shown later in Eq.~20!, Ũ is associated with the Pfirsch
Schlüter fluxes and its specific expressions are written
Eqs.~A4! and ~A8!.

Now, let us definega by

ga5 f a12 f a1
( l 51) . ~13!

The neoclassical viscosities which we are concerned with
derived from thel 52 component included inga . Substitut-
ing Eq. ~13! into Eq. ~3!, we obtain

Viga2Ca
L~ga!5Ha

( l 51)1Ha
( l 52) , ~14!

where thel 51 and l 52 Legendre component terms in th
right-hand side are written as

Ha
( l 51)5

ea

Ta
v iB

^BEi&

^B2&
f aM1Ca

L~ f a1
( l 51)! ~15!

and

Ha
( l 52)5

f aM

Ta
FsUaH ^uiaB&

^B2&
1

2

5pa

^qiaB&

^B2& S xa
22

5

2D J
1sXaH Xa11Xa2S xa

22
5

2D J G
5

f aM

Ta

V8

4p2 FsPa

x8 H ^ua
u&1

2

5pa
^qa

u&S xa
22

5

2D J
1

sTa

c8 H ^ua
z&1

2

5pa
^qa

z&S xa
22

5

2D J G , ~16!
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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respectively. In deriving Eqs.~14!–~16!, Eq. ~11! is used and
f a1

( l 51,j >2) in Eq. ~7! is neglected by employing the thirteen
moment~13M! approximation.3 By including the high-order
parallel flow variables corresponding to thej 52,3,... La-
guerre polynomial components off a1

( l 51) , the formulation
presented in this work can be extended straightforwardly
the cases with the higher-order~21M, 29M,...!
approximations.3 In Eq. ~16!, ua

u5ua•¹u (ua
z5ua•¹z) and

qa
u5qa•¹u (qa

z5qa•¹z) are contravariant poloidal~toroi-
dal! components of the flows, andsUa , sXa , sPa , andsTa

are defined by

sUa52mav2P2~j!B•¹ ln B52Vi~mavjB!,

sXa52v2P2~j!
B

Va
S Ũb1

¹s3b

B D •¹ ln B

52v2P2~j!
b•¹~BŨ!

2Va
,

~17!sPa52mav2P2~j!BP•¹ ln B,

sTa52mav2P2~j!BT•¹ ln B,

respectively, whereBP[x8¹zH3¹s andBT[c8¹s3¹uH

are the poloidal and toroidal magnetic fields, respectiv
represented by the Hamada coordinates (s,uH ,zH) ~the sub-
script H is added to the angle variables whenever the H
mada coordinates should be used! andVa[eaB/(mac) is the
gyrofrequency. Then, we find that the parallel, poloidal, a
toroidal neoclassical viscosities are written in terms ofsUa ,
sPa , andsTa as

^B•~¹•pa!&5 K E d3vgasUaL ,

^B•~¹•Qa!&5 K E d3vgasUaS xa
22

5

2D L ,

^BP•~¹•pa!&5 K E d3vgasPaL ,

^BP•~¹•Qa!&5 K E d3vgasPaS xa
22

5

2D L , ~18!

^BT•~¹•pa!&5 K E d3vgasTaL ,

^BT•~¹•Qa!&5 K E d3vgasTaS xa
22

5

2D L ,

where pa[*d3vma(v i
22 1

2v'
2 ) f a1(bb2 1

3I ) and Qa

[*d3vma(v i
22 1

2v'
2 )(xa

22 5
2) f a1(bb2 1

3I ). We also note that
the neoclassical radial particle and heat fluxes are writte
terms ofsXa as

Ga5 K E d3vgavda•¹sL 5 K E d3vgasXaL 1Ga
PS,

qa

Ta
5 K E d3vgavda•¹sS xa

22
5

2D L
5 K E d3vgasXaS xa

22
5

2D L 1
qa

PS

Ta
, ~19!

whereGa
PS andqa

PS are the Pfirsch–Schlu¨ter ~PS! radial par-
ticle and heat fluxes defined by
Downloaded 03 Mar 2009 to 133.75.139.172. Redistribution subject to AIP
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Ga
PS52

c

ea
^ŨF ia1&,

qa
PS

Ta
52

c

ea
^ŨF ia2&, ~20!

respectively, with the parallel friction forces

F ia15E d3vmav iCa
L~ f a1!,

F ia25E d3vmav iS xa
22

5

2DCa
L~ f a1!. ~21!

As shown in Refs. 29 and 33,̂*d3vgasXa&5Ga2Ga
PS

[Ga
bn and Ta^*d3vgasXa(xa

225/2)&5qa2qa
PS[qa

bn can be
written as the sum of banana-plateau and nonaxisymme
parts. Multiplying Eq.~14! by ga / f aM , integrating it in the
velocity space, taking its flux surface average, and using E
~16!, ~18!, and ~19!, we can express the flux-surface
averaged entropy production rate33,34 Ṡa associated withga

per unit volume by the inner product of conjugate pairs
fluxes and forces as

TaṠa52TaK E d3v
ga

f aM
Ca

L~ga!L
5^B•~¹•pa!&

^uiaB&

^B2&
1^B•~¹•Qa!&

2

5pa

3
^qiaB&

^B2&
1Ga

bnXa11
qa

bn

Ta
Xa2

5
V8

4p2 F ^BP•~¹•pa!&
^ua

u&
x8

1^BP•~¹•Qa!&
2

5pa

^qa
u&

x8
1^BT•~¹•pa!&

^ua
z&

c8

1^BT•~¹•Qa!&
2

5pa

^qa
z&

c8
G . ~22!

We find from Eq.~22! that the parallel viscositieŝB•(¹
•pa)& and^B•(¹•Qa)& are transport fluxes conjugate to th
parallel flows ^uiaB&/^B2& and (2/5pa)^qiaB&/^B2& as
forces, respectively, and that the radial neoclassical flu
Ga

bn and qa
bn/Ta are conjugate to the radial gradient forc

Xa1 and Xa2 , respectively. Also, as another choice, the p
loidal viscosities@^BP•(¹•pa)&,^BP•(¹•Qa)&# and the to-
roidal viscosities@^BT•(¹•pa)&,^BT•(¹•Qa)&# can be re-
garded as transport fluxes conjugate to the poloidal flo
@^ua

u&/x8,(2/5pa)^qa
u&/x8# and the toroidal flows

@^ua
z&/c8,(2/5pa)^qa

z&/c8#, respectively. Now, our main
concern is how to obtain the transport matrices which c
nect these conjugate pairs of fluxes and forces. This is
plained in the next section.

Here, we consider thel 51 Legendre component term
Ha

( l 51) , which also makes a significant contribution to th
solution ga of Eq. ~14! especially in the weakly collisiona
regime in order to insure*21

11gadj50. Substituting Eq.~7!
into Eq.~15! and using Eq.~11! and the rotational symmetry
of the collision operatorCa

L , we can writeHa
( l 51) in the

following form:
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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Ha
( l 51)5 f aM

manD
a

Ta
vj~Baa1Ũga!, ~23!

whereaa andga are functions of (s,v) and are independen
of (u,z,j). We find in the next section thataa is written in
terms of the parallel flows and the radial gradient forces
that ga is unnecessary for calculation of neoclassical tra
port coefficients.

III. RESPONSE FUNCTIONS AND TRANSPORT
COEFFICIENTS

Hereafter, as an approximation of the linearized collis
operator in Eq.~14!, we use the pitch-angle-scattering ope
tor defined by

Ca
PAS[

nD
a

2

]

]j
~12j2!

]

]j
, ~24!

with the energy-dependent collision frequencynD
a given by2

nD
a [(

b

3Ap

4
tab

21xa
23H~xb!, ~25!

where (3Ap/4)tab
21[4pnbea

2eb
2 ln L/(ma

2vTa
3 ) (ln L: The

Coulomb logarithm! and H(x)[@(2x221)F(x)
1xF8(x)#/(2x2) @F(x)[2p21/2*0

x exp(2t2)dt: The error
function#. The use ofCa

PAS in Eq. ~14! is considered to
be a better approximation than that in Eq.~3! from the view-
point of the momentum conservation because gener
we have *d3vmav iCa

L( f a1)Þ*d3vmav iCa
PAS( f a1) but

*d3vmav iCa
L( f a12 f a1

( l 51))505*d3vmav iCa
PAS( f a12fa1

(l51)).
Then, the formal solution of Eq.~14! with the source terms
given by Eqs.~16! and ~23! is written as

ga5
f aM

Ta
FGUaH ^uiaB&

^B2&
1

2

5pa

^qiaB&

^B2& S xa
22

5

2D J
1GXaH Xa11Xa2S xa

22
5

2D J 1aa~GUa1mavjB!

1manD
a gaE l

ŨdlG , ~26!

whereGUa andGXa are defined as solutions of

~Vi2Ca
PAS!FGUa

GXa
G5FsUa

sXa
G . ~27!

In deriving Eq.~26!, we have also used the relation

~Vi2Ca
PAS!~GUa1mavjB!5manD

a vjB. ~28!

We can easily find that the last term includingga in the
right-hand side of Eq.~26!, which is independent ofj, makes
no contribution to flows, viscosities, and radial transp
fluxes.

Here, we define the inner product (F,G) for arbitrary
functionsF(u,z,j) andG(u,z,j) by

~F,G![ 1
2E

21

1

dj^FG&, ~29!
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where^•& denotes the flux surface average. With respec
this inner product, the operatorsVi andCa

PAS are found to be
antisymmetric and symmetric, respectively,

~ViF,G!52~F,ViG!, ~Ca
PASF,G!5~F,Ca

PASG!.
~30!

Then, substituting Eq.~26! into the relation (vjB,Ca
PASga)

50, which is derived from the definition ofga in Eq. ~13!,
we can representaa by a linear combination of the paralle
flows and the radial gradient forces as

aa5
1

2
3 maTanD

a xa
2^B2&2~sUa ,GUa!

F ~sUa ,GUa!

3H ^uiaB&

^B2&
1

2

5pa

^qiaB&

^B2& S xa
22

5

2D J 1~sUa ,GXa!

3H Xa11Xa2S xa
22

5

2D J G . ~31!

Substituting again Eq.~31! into Eq. ~26!, ga is rewritten as

ga5
f aM

Ta
FGUaH ^uiaB&

^B2&
1

2

5pa

^qiaB&

^B2& S xa
22

5

2D J
1GXaH Xa11Xa2S xa

22
5

2D J 1manD
a gaE l

ŨdlG ,
~32!

whereGUa and GXa represent the responses of the distrib
tion function ga to the parallel flow^uiaB&/^B2& and the
radial gradient forceXa1 , respectively, which are defined b

GUa5F12
3~sUa ,GUa!

2maTanD
a xa

2^B2&G
21

3FGUa1
3~sUa ,GUa!

2maTanD
a xa

2^B2&
mavjBG ,

GXa5GXa1
3~sUa ,GXa!

2maTanD
a xa

2^B2& F12
3~sUa ,GUa!

2maTanD
a xa

2^B2&G
21

3~GUa1mavjB!. ~33!

Using Eq.~30! and the definitions ofs’s, G’s, andG’s, we
can prove the following relations:

~sUa ,GXa!5~sXa ,GUa!, ~sUa ,GXa!5~sXa ,GUa!,
~34!

which are associated with the Onsager symmetry33–35 of the
transport coefficients.

Substituting Eq.~32! into Eqs.~18! and ~19!, we obtain
the linear relations between the conjugate pairs
@^B•(¹•pa)&,^B•(¹•Qa)&,Ga

bn,qa
bn/Ta# and @^uiaB&/^B2&,

(2/5pa) ^qiaB&/^B2&,Xa1 ,Xa2] as
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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F ^B•~¹•pa!&
^B•~¹•Qa!&

Ga
bn

qa
bn/Ta

G5F Ma1 Ma2 Na1 Na2

Ma2 Ma3 Na2 Na3

Na1 Na2 La1 La2

Na2 Na3 La2 La3

G
3F ^uiaB&/^B2&

2

5pa
^qiaB&/^B2&

Xa1

Xa2

G . ~35!

Here, the coefficientsMa j , Na j , andLa j ( j 51,2,3) in the
Onsager-symmetric matrix are written in the form of the e
ergy integral

@Ma j ,Na j ,La j#5na

2

Ap
E

0

`

dKAKe2KS K2
5

2D j 21

3@Ma~K !,Na~K !,La~K !#, ~36!

whereMa(K), Na(K), andLa(K) represent contributions o
monoenergetic particles withK[xa

2[mav2/2Ta to Ma1 ,
Na1 , and La1 , respectively, which are given by the inn
products of the source termss’s and the response function
G’s as

Ma~K !5
1

Ta
~sUa ,GUa!

5
1

Ta
~sUa ,GUa!F12

3~sUa ,GUa!

2maTanD
a ~K !K^B2&G

21

,

Na~K !5
1

Ta
~sXa ,GUa!

5
1

Ta
~sXa ,GUa!F12

3~sUa ,GUa!

2maTanD
a ~K !K^B2&G

21

,

~37!

La~K !5
1

Ta
~sXa ,GXa!

5
1

Ta
~sXa ,GXa!1

3~sXa ,GUa!2

2maTa
2nD

a ~K !K^B2&

3F12
3~sUa ,GUa!

2maTanD
a ~K !K^B2&G

21

.

In the same way, we obtain the linear relations betwe
the conjugate pairs of@^BP•(¹•pa)&,^BP•(¹•Qa)&,^BT

•(¹•pa)&,^BT•(¹•Qa)&# and @^ua
u&/x8,(2/5pa) ^qa

u&/
x8,^ua

z&/c8,(2/5pa) ^qa
z&/c8,] as
Downloaded 03 Mar 2009 to 133.75.139.172. Redistribution subject to AIP
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F ^BP•~¹•pa!&
^BP•~¹•Qa!&
^BT•~¹•pa!&
^BT•~¹•Qa!&

G5F Ma1PP Ma2PP Ma1PT Ma2PT

Ma2PP Ma3PP Ma2PT Ma3PT

Ma1PT Ma2PT Ma1TT Ma2TT

Ma2PT Ma3PT Ma2TT Ma3TT

G
33

^ua
u&/x8

2

5pa
^qa

u&/x8

^ua
z&/c8

2

5pa
^qa

z&/c8
4 . ~38!

Here, the Onsager-symmetric poloidal and toroidal viscos
coefficientsMa jPP , Ma jPT , and Ma jTT ( j 51,2,3) are also
written in the form of the energy integral

@Ma jPP ,Ma jPT ,Ma jTT#5na

2

Ap
E

0

`

dKAKe2KS K2
5

2D j 21

3@MaPP~K!,MaPT~K!,MaTT~K!#,

~39!
where MaPP(K), MaPT(K), and MTT(K) represent contri-
butions of monoenergetic particles toMa jPP , Ma jPT , and
Ma jTT , respectively, which are given in terms ofMa(K),
Na(K), andLa(K) as shown by Eq.~B5! in Appendix B.

Now, we need the solutionsGUa andGXa of Eq. ~27! in
order to obtain the monoenergetic coefficien
@Ma(K),Na(K),La(K)# in Eq. ~37!. Since, in the DKES19,20

and other numerical codes for the neoclassical transport
efficients, the drift kinetic equation to be solved is not E
~14! but Eq.~3! with the pitch-angle-scattering operator, the
appear at first to be irrelevant to calculation of t
(GUa ,GXa) and @Ma(K),Na(K),La(K)#. However, in fact,
these codes can be made use of to obtain them as show
the following.

When solving Eq.~3! by the DKES, the right-hand side
of Eq. ~3! are written as a linear combinations of the sour
termss1

1 ands3
1 defined by20

s1
1[2

v2

3Va
F11

1

2
P2~j!Gb3¹ ln B•¹s,

s3
1[

v2

nD
a P2~j!B•¹ ln B5ViS B

nD
a vj D , ~40!

which are associated with the radial particle flux and
bootstrap current, respectively. Here, it is noted that, si
we have neglectedvE•¹ f a1 (vE[cE3B/B2) in Eq. ~3!, s3

1

defined in Eq.~40! corresponds tos3
1(Es50) in Rij and

Hirshman.20 This definition ofs3
1 based on Ref. 20 differs

from that in Ref. 19 in that the former excludes the Spitz
flow part from the total parallel flow. Effects ofvE•¹ f a1

such as nonlinearEs-dependences of the neoclassical tra
port can be included by the procedures described in App
dix E. It is useful to find thatsUa and GUa are directly
related tos3

1 and (F3
11F3

2), respectively, by

sUa52manD
a s3

1 ,

GUa52manD
a ~F3

11F3
2!, ~41!
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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and thatsXa and GXa are written in terms ofs1
1 and (F1

1

1F1
2), respectively, as

sXa52s1
12ViS B

Va
vjŨ D ,

GXa52~F1
11F1

2!2
B

Va
vjŨ1

nD
a B

Va
E l

Ũdl. ~42!

Here, (F1
11F1

2) and (F3
11F3

2) represent the respons
functions associated with the source termss1

1 and s3
1 for

the case ofEs50 in Rij and Hirshman,20 where the super-
scripts1 and2 denote the even and odd parts with resp
to j, respectively. Then, substituting Eqs.~41! and ~42! into
Eq. ~37!, we have

Ma~K !5
ma

2

Ta
@nD

a ~K !#2D33~K !F12
3manD

a ~K !D33~K !

2TaK^B2& G21

,

Na~K !5
ma

Ta
nD

a ~K !D13~K !F12
3manD

a ~K !D33~K !

2TaK^B2& G21

, ~43!

La~K !5
1

Ta
S D11~K !2

B2v2nD
a

3Va
2 ^Ũ2&

1
3manD

a ~K !@D13~K !#2

2TaK^B2&

3F12
3manD

a ~K !D33~K !

2TaK^B2& G21D ,

where

D jk~K ![ 1
2E

21

1

dj^s j
1Fk

1& ~ j ,k51,3!, ~44!

represent the transport coefficients for monoenergetic
ticles which can be obtained as an output of the DKES20 ~for
the case ofEs50). For collision frequencies in the banan
Downloaded 03 Mar 2009 to 133.75.139.172. Redistribution subject to AIP
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r-

and plateau regimes, the term (B2v2nD
a /3Va

2)^Ũ2& of La(K)
in Eq. ~43!, which corresponds to the Pfirsch–Schlu¨ter-flux
part, is negligibly small.

Now, we have found that numerical solvers such as
DKES can be utilized to calculate the coefficien
@Ma(K),Na(K),La(K)# by using Eq. ~43!. Once
@Ma(K),Na(K),La(K)# are given, the monoenergetic polo
dal and toroidal viscosity coefficients@MaPP(K),
MaPT(K),MaTT(K)] are immediately derived from Eq.~B5!
in Appendix B, and the energy-integrated coefficien
(Ma j ,Na j ,La j) and (Ma jPP ,Ma jPT ,Ma jTT) are obtained by
Eqs. ~36! and ~39!, respectively. Then, all the neoclassic
transport coefficients for radial fluxes and parallel curre
can be calculated from (Ma j ,Na j ,La j) as shown in Appen-
dix C. It should be noted that the parallel momentum bala
equations and the friction-flow relations with collisional m
mentum conservation are used to derive the neoclass
transport coefficients in Appendix C. Therefore, these co
ficients include the coupling effects between unlike-spec
particles as well as they recover the intrinsic ambipolarity
the radial particle fluxes in the symmetric limit. These pro
erties are not obtained by only solving the drift kinetic equ
tion ~3! without the field particle collision term
Cab( f aM , f b1). For the symmetric case,Ma(K), Na(K), and
La(K) are proportionally related to each other as shown
Eq. ~D4! in Appendix D.

In the Pfirsch–Schlu¨ter regime, @nD
a (K)@vTaAK/Lc ,

(Lc : The characteristic length of magnetic ripples along
field line!#, the plateau regime @vTaAK/Lc@nD

a (K)
@(dB/B)3/2vTaAK/Lc , (dB: The field strength variation in
the magnetic ripples!#, and the banana regime@nD

a (K)
!(dB/B)3/2vTaAK/Lc#, the monoenergetic coefficient
Ma(K) and Na(K) associated with the parallel viscositie
can analytically be given by33
Ma~K !55
2

5
mavTa

2 taa^~B•¹ ln B!2&K2@taanT
a~K !#21 ~Pfirsch–Schlu¨ter!

1

4
pmavTa^B

2&1/2~4p2/V8!S (
(m,n)Þ(0,0)

ubmnu2umx82nc8u DK3/2 ~plateau!

2

3
mataa

21~ f t / f c!^B
2&K@taanD

a ~K !# ~banana!

5mavTaK
3/235

2

5
^~B•¹ ln B!2&@nT

a~K !/v#21 ~Pfirsch–Schlu¨ter!

1

4
p^B2&1/2~4p2/V8!S (

(m,n)Þ(0,0)
ubmnu2umx82nc8u D ~plateau!

2

3
~ f t / f c!^B

2&@nD
a ~K !/v# ~banana!

~45!

and

Na~K !52
cGa

(BS)

ea^B
2&

Ma~K !, ~46!
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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respectively. Here,Ga
(BS) is a flux-surface function, which represents the geometrical factor associated with the bo

current5,29–31,33,38@see the paragraph after Eq.~49!#, and is determined by the magnetic configuration as33,38

Ga
~BS!

5H (4p2/V8)^(B•¹ ln B)2&21[Bz
(Boozer)^(] ln B/]uH)(B•¹ ln B)&2Bu

(Boozer)^~] ln B/]zH)(B•¹ ln B)&] ~Pfirsch–Schlu¨ter)

S (
(m,n)Þ(0,0)

ubmnu2umx82nc8u D 21

(
(m,n)Þ(0,0)

ubmnu2~mBz
(Boozer)2nBu

(Boozer)!~mx82nc8)/umx82nc8u (plateau)
~47!
at

h–

r
-

i
s

effi-
ic

oot-
on-

D,

n-

llel

ffi-
s

and the analytical expression ofGa
(BS) for the banana regime

is given in Refs. 5 and 29–31. When we evaluateGa
(BS) for

the Pfirsch–Schlu¨ter regime given by Eq.~47!, Eq. ~A11! is

useful. In Eq. ~45!, f t[12 f c and f c[
3
4^B

2&*
0
Bmax

21

dl l/
^(12lB)1/2)& represent the fractions of trapped and circul
ing particles, respectively, andnT

a(K) for the Pfirsch–
Schlüter regime is given by2 nT

a[3nD
a 1nE

a[(3Ap/
4)(btab

21@$F(xb)23G(xb)%/xa
314(Ta /Tb)(11mb/ma)G(xb) / xa#

with G(x)[@F(x)2xF8(x)#/(2x2). Thus, in order to cor-
rectly reproduce the viscosity coefficients for the Pfirsc
Schlüter regime, we should replacenD

a with nT
a/3 when using

the pitch-angle-scattering operator in Eq.~24! for that colli-
sional region. In Eqs.~45! and ~47!, bmn for the plateau
regime are the coefficients in the Fourier expansion ofB:

B5B0S 11 (
(m,n)Þ(0,0)

bmn exp@ i ~mu2nz!# D , ~48!

where we should note that the existence of the plateau
gime requiresubmnu!1 and that it does not make a signifi
cant difference which of the flux-coordinate systems (s,u,z)
is used to calculatebmn for the plateau regime. If all the
particles in the velocity space are dominantly contained
either of the Pfirsch–Schlu¨ter, plateau, and banana regime
we obtain from Eqs.~35!, ~36!, and~46!,
Downloaded 03 Mar 2009 to 133.75.139.172. Redistribution subject to AIP
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n
,

F ^B•~¹•pa!&
^B•~¹•Qa!&G5^B2&21FMa1 Ma2

Ma2 Ma3
G

3S F ^uiaB&

2

5pa
^qiaB&G2Ga

(BS) c

ea
FXa1

Xa2
G D . ~49!

As shown by substituting Eq.~49! into the parallel momen-
tum balance equations@see Eq.~C1! in Appendix C#, Ga

(BS)

represents the geometrical factor which enters the co
cients relating the parallel flows to the thermodynam
forces. Also, it is directly confirmed from Eqs.~46!, ~C5!,
~C8! and ~C11!–~C13! that the geometrical factorGa

(BS) ap-
pears in the neoclassical transport coefficients for the b
strap current as well as in the nondiagonal coefficients c
necting the electrons’ fluxes~forces! with the ions’ forces
~fluxes!. For symmetric systems described in Appendix
the geometrical factorGa

(BS) defined by Eq.~46! is indepen-
dent of the collision frequency@see Eq.~D5!# and, therefore,
Eq. ~49! is always satisfied. For example,Ga

(BS)

5Bz
(Boozer)/x8 in the axisymmetric case. However, for no

axisymmetric systems, Eq.~49! is not generally valid~except
for the limiting collision frequency regimes!, and therefore,
the two independent 232 matrices@Ma j# and @Na j# ob-
tained from the energy integral in Eq.~36! should be used
instead for relating the parallel viscosities to the para
flows and to the radial gradient forces.

We can analytically express the monoenergetic coe
cient La(K) for the Pfirsch–Schlu¨ter and plateau regime
as33
La~K !5
c2Ma~K !

ea
2^B2&2 H ~4p2/V8!2^~B•¹ ln B!2&21^@Bz

(Boozer)~] ln B/]uH!2Bu
(Boozer)~] ln B/]zH!#2& ~Pfirsch–Schlu¨ter!

S (
(m,n)Þ(0,0)

ubmnu2umx82nc8u D 21

(
(m,n)Þ(0,0)

ubmnu2~mBz
(Boozer)2nBu

(Boozer)!2/umx82nc8u ~plateau!

5
mac2

ea
2 vTaK

3/2H 2
5 ~4p2/V8!2^B2&22^@Bz

(Boozer)~] ln B/]uH!2Bu
(Boozer)~] ln B/]zH!#2&@nT

a~K !/v#21 ~Pfirsch–Schlu¨ter!

1
4 p^B2&23/2~4p2/V8! (

(m,n)Þ(0,0)
ubmnu2~mBz

(Boozer)2nBu
(Boozer)!2/umx82nc8u ~plateau!

,

~50!
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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which shows that, for these regimes,La(K) has the same
dependence on the collision frequency and the energy
Ma(K).

It is well-known that, for nonsymmetric systems, th
centers of trapped-particle orbits move across magnetic
faces and cause the neoclassical ripple transport in
weakly collisional sub-regime~so-called 1/n regime!.5–8 The
bounce-averaged part of the distribution function^ f a1&b

[(r f a1dl/v i)/(rdl/v i) makes no contribution to the para
lel viscosities5,29 and consequently toMa(K) and Na(K),
while it contributes dominantly to the radial particle and he
fluxes and toLa(K) in the 1/n regime. Using the analytica
solution of the bounce-averaged drift kinetic equation
Shaing and Hokin,7 we obtainLa(K)@}1/nD

a (K)# as

La~K !5
1

4&p2Ta
S mac

eac8D
2

vTa
4 taa

K2

taanD
a ~K !

Ga
(1/n)

5
1

2&p2

mac2

ea
2 vTaK

3/2
Ga

(1/n)

~c8!2@nD
a ~K !/v#

~ for the 1/n regime!, ~51!

whereGa
(1/n) represents the geometrical factor for the ne

classical ripple transport defined by7

Ga
(1/n)5E

0

2p

du eH
3/2FG1S ]eT

]u D 2

22G2S ]eT

]u D S ]eH

]u D 2

1G3S ]eH

]u D 2G , ~52!

with G1516/9, G2516/15, andG350.684 for the magnetic
field strength B5B0@11eT(s,u)1eH(s,u)cos(lu
2nz)# (ueTu!1,ueHu!1). Here, the safety factorq(s)
[c8/x8 is assumed to satisfynq(s)@ l . For this case, the
1/n regime is defined bŷ u̇&b!nD

a (K)/eH!eH
1/2vTa /(R/n),

whereR denotes the major radius of the torus and^u̇&b rep-
resents the bounce-averaged poloidal angular velocity of
lically trapped particles.@Note that, in the present study u
ing Eq. ~3! as the basic equation, we do not treat the cas
cEr /(rB0);^u̇&b>nD

a (K)/eH (r : the minor radius of the
torus!#. In the 1/n regime, Ma(}nD

a ) and Na(}nD
a ) make

little contribution to the radial transport fluxes so that E
~35! gives Ga

bn.La1Xa11La2Xa2 and qa
bn/Ta.La2Xa1

1La3Xa2 , in which dependence onXb1 andXb2 with bÞa
are negligible. This fact justifies conventional calculations
the neoclassical ripple transport using the pitch-ang
scattering collision model,7,8 in which the collisional mo-
mentum conservation and the nondiagonal coupling betw
unlike-species particles are not taken into account. Howe
in general, we should use all elementsMa j , Na j , andLa j in
Eq. ~35! to calculate the total neoclassical transport flux
especially when the magnitude of the banana-plateau tr
port induced by the parallel viscosity is comparable to
larger than that of the ripple transport as is the case in qu
symmetric systems.10–12
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IV. NUMERICAL EXAMPLES

Here, in order to illustrate the validity of the procedur
described in the previous sections, we present numerica
sults for the simple nonsymmetric system, in which the m
netic field strength is given by

B5B0~s!@12e t~s!cosuB2eh~s!cos~ luB2nzB!#. ~53!

The mean minor radius of the flux surface is used for
radial coordinates. For simplicity, we consider a single flu
surface of a large-aspect-ratio torus with the minor radius
50.4 m and the major radiusR54 m. Then, parameter
used for numerical calculations are determined asB051 T,
e t50.1, 0<eh<0.1, c850.4 T•m, x850.15 T•m (q
[c8/x852.6667), Bz

(Boozer)54 T•m, Bu
(Boozer)50 T•m ~no

net toroidal current!, l 52, andn510 ~corresponding to the
Large Helical Device39!. Using these parameters and E
~53!, we can calculatêB2&54p2/(*0

2pduB*0
2pdzBB22) and

V8[4p2(c8Bz
(Boozer)1x8Bu

(Boozer))/^B2&. Hereafter, sub-
scripts representing particle species are omitted.

The monoenergetic diffusion coefficien
@D11(K),D13(K),D33(K)# are obtained by using the DKES

Figure 1 shows D11* [D11(K)/@ 1
2vT(BvT /V)2K3/2#, D13*

[D13(K)/@ 1
2vT(BvT /V)K#, and D33* [D33(K)/( 1

2vTK1/2)
as a function of nD /v for eh50, 0.005, 0.01, 0.02,
0.05, and 0.1. Substituting these monoenergetic diffusion
efficients into Eq. ~43! and using Eq.~B5! give other
monoenergetic coefficients @M (K),N(K),L(K)# and
@M PP(K),M PT(K),MTT(K)#, which are illustrated in Figs
2–5.

Figure 2 showsM* [M (K)/(mvTK3/2) as a function of
nD /v. Here,M* is written in terms ofD33* as

M* 5
~nD /v !2D33*

12 3
2 ~nD /v !D33* /^B2&

. ~54!

In Fig. 2, dotted curves with open circles and solid lin
representM* obtained from numerical results ofD33* in Fig.
1 and from the analytical formulas in Eq.~45!, respectively.
When the formula for the Pfirsch–Schlu¨ter regime given by
Eq. ~45! is used in Fig. 2,nT is replaced with 3nD . However,
as mentioned after Eq.~47!, the correct functional form of
nT(K) should be taken into account when we calculate
energy-integrated viscosity coefficients. We can see an ex
lent agreement between the numerical and analytical res
except for transition regions between the banana, plat
and Pfirsch–Schlu¨ter regimes. A simple rationa
approximation,2 which smoothly connects the three analy
cal expressions, would be useful for this case.

Figure 3 showsL* [L(K)/@ 1
2(vT /T)(BvT /V)2K3/2# as

a function ofnD /v. Here,L* is given in terms ofD11* and
D13* by

L* 5D11* 2 2
3 ~nD /v !^Ũ2&1

3
2 ~nD /v !~D13* !2/^B2&

12 3
2 ~nD /v !D33* /^B2&

.

~55!
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FIG. 1. D11* [D11(K)/@
1
2vT(BvT /V)2K3/2# ~a!, D13* [D13(K)/

@
1
2vT(BvT /V)K# ~b!, and D33* [D33(K)/(

1
2vTK1/2) ~c! as a function of

nD /v for eh50, 0.005, 0.01, 0.02, 0.05, and 0.1 obtained by using
DKES.
Downloaded 03 Mar 2009 to 133.75.139.172. Redistribution subject to AIP
In the same way as in Fig. 2, dotted curves with open circ
and solid lines in Fig. 3 representL* obtained from numeri-
cal results ofD11* , D13* , and D33* in Fig. 1 and from the
analytical formulas in Eqs.~50! and ~51!, respectively. We
see that, in the 1/n regime witheh50.005 and 0.01, numeri
cally obtainedL* are significantly smaller than the analytic
predictions. This is because, for such smalleh’s, the fraction
of helically trapped particles are overestimated by the a
lytical formula in Eq.~51!, where the lowest-order guiding
center motion is regarded as a toroidal one instead of a
allel one under the condition ofnq@ l . Recently, an
improved formulation of the neoclassical ripple transport h
been given by Beidler and Maaßberg.8

We plot the geometrical factor for the bootstrap curre
G(BS)[2(e^B2&/c)N(K)/M (K) @see Eq.~46!# instead of
N(K) as a function ofnD /v in Fig. 4. Here,G(BS) is written
in terms ofD13* andD33* as

G(BS)52
^B2&D13*

~nD /v !D33*
. ~56!

In Fig. 4, dotted curves with open circles representG(BS)

obtained from numerical results ofD13* and D33* in Fig. 1.
The axisymmetric case witheh50 is given by the constant
G(BS)5B(Boozer)/x8526.667. Analytical results given by Eq
~47! for the Pfirsch–Schlu¨ter and plateau regimes are repr
sented by thick line segments, which are in good agreem
with the numerical results, although the latter do not sh
clear constancy in the plateau regime.

Figure 5 shows @M PP* ,2M PT* ,MTT* #[@M PP(K),
2MPT(K),MTT(K)#/@(4p2/V8)mvT(c8x8)2K3/2# as a function of
nD /v. For eh<0.02, MTT takes small negative value
around the plateau regime, which are not plotted in Fig. 5.
eh increases in the Pfirsch–Schlu¨ter and plateau regimes, th
magnitude of the viscosity coefficientsM PT and MTT in-
creases more rapidly thanM PP . It is also seen that, in
the 1/n regime,M PP.2M PT.MTT}1/nD , which reflects

e

FIG. 2. M* [M (K)/(mvTK3/2) as a function ofnD /v for eh50, 0.005,
0.01, 0.02, 0.05, and 0.1. Dotted curves with open circles and solid l
representM* obtained from numerical results ofD33* in Fig. 1 and from the
analytical formulas in Eq.~45!, respectively.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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from the fact that the parallel viscositŷB•(¹•pa)&
5^BP•(¹•pa)&1^BT•(¹•pa)&(}nD) is much smaller than
the viscosities in other directions (}1/nD).

From the results shown above, it is confirmed that
neoclassical coefficients for the viscosities, the bana
plateau and nonsymmetric radial transport fluxes, and
geometrical factor associated with the bootstrap current
obtained straightforwardly by using our method.

V. CONCLUSIONS

In the present paper, we have presented two type
Onsager-symmetric matrices: One of them, with the eleme

FIG. 3. L* [L(K)/@
1
2(vT /T)(BvT /V)2K3/2# as a function ofnD /v for eh

50, 0.005, 0.01, 0.02, 0.05, and 0.1. Dotted curves with circles and s
lines representL* obtained from numerical results ofD11* , D13* , andD33* in
Fig. 1 and from the analytical formulas in Eqs.~50! and ~51!, respectively.

FIG. 4. The geometrical factor for the bootstrap currentG(BS) as a function
of nD /v for eh50, 0.005, 0.01, 0.02, 0.05, and 0.1. Dotted curves with op
circles representG(BS) obtained from numerical results ofD13* and D33* in
Fig. 1. The axisymmetric case witheh50 is given by the constant,G(BS)

5B(Boozer)/x8526.667. Analytical results given by Eq.~47! for the Pfirsch–
Schlüter and plateau regimes are represented by thick line segments.
Downloaded 03 Mar 2009 to 133.75.139.172. Redistribution subject to AIP
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(Ma j ,Na j ,La j), relates the parallel viscosities and the rad
fluxes to the parallel flows and the radial-gradient forces
in Eq. ~35!, and the other, represented b
(Ma jPP ,Ma jPT ,La jTT), connects the poloidal and toroida
viscosities to the poloidal and toroidal flows as in Eq.~38!.
We have shown that the matrix elements (Ma j ,Na j ,La j) can
be obtained readily from the output of commonly used n
merical codes such as the DKES and that the poloidal
toroidal viscosity coefficients (Ma jPP ,Ma jPT ,La jTT) can be
derived directly from (Ma j ,Na j ,La j). Using the matrix ele-
ments (Ma j ,Na j ,La j) in the parallel momentum balanc
equations combined with the friction-flow relations yield
the neoclassical transport coefficients for the radial part
and heat fluxes and the bootstrap current, which include
coupling effects between unlike-species particles as wel
the intrinsic ambipolarity of the radial particle fluxes in th
symmetric case. These procedures for accurate calculatio
neoclassical viscosity and transport coefficients, the valid
of which has been verified by numerical examples, are c
sidered to be useful especially when evaluating how th
neoclassical coefficients in quasi-symmetric toroidal syste
such as quasi-axisymmetric systems deviate from thos
exactly symmetric systems.
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APPENDIX A: BOOZER AND HAMADA COORDINATES

We consider general toroidal configurations, in whi
the magnetic fieldB is written as in Eq.~1! of Sec. II. In the

id

n

FIG. 5. Poloidal and toroidal viscosity coefficients as a function ofnD /v for
eh50, 0.005, 0.01, 0.02, 0.05, and 0.1. Curves with circles, crosses,
triangles representM PPT* , 2M PT* , andMTT* , respectively.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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Boozer36 coordinates (s,uB ,zB), the covariant poloidal and
toroidal components of the magnetic fieldB are flux-surface
functions given by

Bu
(Boozer)[B•

]x

]uB
5

2

c
I T~s!,

Bz
(Boozer)[B•

]x

]zB
5

2

c
I P

d ~s!. ~A1!

Here, the poloidal and toroidal currents are defined
I P

d (s)[*S
P
d (s)B•dS and I T(s)[*ST(s)B•dS, respectively,

whereSP
d (s) represents the part of au5constant surface tha

lies outsidethe flux surface with the labels andST(s) is the
part of az5constant surface that liesinsidethe flux surface.
The Jacobian for the Boozer coordinates is given by

AgB[@¹s•~¹uB3¹zB!#215
V8~s!

4p2

^B2&
B2 . ~A2!

Next, in the Hamada37 coordinates (s,uH ,zH), the con-
travariant poloidal and toroidal components of the magn
field B and the JacobianAgH are flux-surface functions writ
ten as

B(Hamada)
u [B•¹uH5

4p2

V8~s!
x8~s!,

B(Hamada)
z [B•¹zH5

4p2

V8~s!
c8~s!, ~A3!

AgH[@¹s•~¹uH3¹zH!#215
V8~s!

4p2 ,

respectively. Here, the poloidal and toroidal fluxes are giv
by 2px(s)5(2p)21*V(s)d

3xB•¹u and 2pc(s)
5(2p)21*V(s)d

3xB•¹z, respectively,V(s) represents the
volume enclosed by the flux surface with the labels, and the
derivative with respect tos is denoted by85d/ds. Then, we
find that, using the Hamada coordinates, Eq.~12! is easily
solved to yield

Ũ5
B

x8
S Bz

(Hamada)

B2 2
^Bz

(Hamada)&

^B2& D
52

B

c8
S Bu

(Hamada)

B2 2
^Bu

(Hamada)&

^B2& D , ~A4!

where Bu
(Hamada)[B•(]x/]uH) and Bz

(Hamada)[B•(]x/]zH).
We should also note that̂ Bu

(Hamada)&5Bu
(Boozer) and

^Bz
(Hamada)&5Bz

(Boozer).
The transformation from the Boozer to Hama

coordinates40 are written in terms of the generating functio
G as

uH5uB1x8G~s,uB ,zB!,
~A5!

zH5zB1c8G~s,uB ,zB!.

Here, the generating functionG(s,uB ,zB) is periodic inuB

andzB and satisfies the magnetic differential equation

B•¹G5
1

AgH

2
1

AgB

, ~A6!
Downloaded 03 Mar 2009 to 133.75.139.172. Redistribution subject to AIP
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which is rewritten as

S c8
]

]zB
1x8

]

]uB
DG5

^B2&
B2 21. ~A7!

Comparing Eq.~12! with ~A7!, we find thatŨ is related toG
by

Ũ5
V8

4p2B
B3¹s•¹G

5
B

^B2& S Bz
(Boozer) ]G

]uB
2Bu

(Boozer)]G

]zB
D

5
1

B S Bz
(Hamada)]G

]uH
2Bu

(Hamada)]G

]zH
D . ~A8!

From Eq.~A5!, we obtain

]x

]uB
5

]x

]uH
1

]G

]uB
AgHB,

]x

]zB
5

]x

]zH
1

]G

]zB
AgHB, ~A9!

and

]G

]uB
5

^B2&
B2

]G

]uH
,

]G

]zB
5

^B2&
B2

]G

]zH
, ~A10!

where the partial derivatives]/]uH and]/]zH are taken with
the Hamada coordinates (s,uH ,zH) used as the independen
variables. Using Eqs.~A9! and ~A10!, we have

Bz
(Boozer)] ln B

]uH
2Bu

(Boozer)] ln B

]zH

5S Bz
(Hamada)1

V8

4p2 ^B2&
]G

]zH
D ] ln B

]uH

2S Bu
(Hamada)1

V8

4p2 ^B2&
]G

]uH
D ] ln B

]zH

5
V8

4p2 ~¹s3¹ ln B!•S B1
V8

4p2 ^B2&¹GD
5

B2

^B2& F S Bz
(Boozer)1

V8

4p2 ^B2&
]G

]zB
D ] ln B

]uB

2S Bu
(Boozer)1

V8

4p2 ^B2&
]G

]uB
D ] ln B

]zB
G , ~A11!

which is useful when evaluatingGa
(BS) and La for the

Pfirsch–Schlu¨ter regime@see Eqs.~47! and ~50!#. We also
find from Eq.~A7! that

B•¹
]G

]uB
52

2

AgH

] ln B

]uB
,

B•¹
]G

]zB
52

2

AgH

] ln B

]zB
. ~A12!
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Here, let us assume thatc1]B/]uB1c2]B/]zB50,
wherec1 andc2 are constants and (c1 ,c2)Þ(0,0). This con-
dition implies that the magnetic field strength is written
B5B(s,c2uB2c1zB), and it is satisfied approximately i
quasi-symmetric systems, where the neoclassical rip
transport is suppressed. The axisymmetric, poloidally sy
metric, and helically symmetric cases correspond toc150,
c250, andc1•c2Þ0, respectively. Under this symmetry co
dition c1]B/]uB1c2]B/]zB50, we find from Eq.~A12!
that c1]G/]uB1c2]G/]zB is a flux surface function, and
therefore,c1]G/]uB1c2]G/]zB5^c1]G/]uB1c2]G/]zB&
50. Then, we also obtainc1]x/]uB1c2]x/]zB5c1]x/]uH

1c2]x/]zH and c1]G/]uH1c2]G/]zH50 from Eqs.~A9!
and ~A10!, respectively. Consequently, we havec1]B/]uH

1c2]B/]zH5c1]B/]uB1c2]B/]zB50. Inversely, if
c1]B/]uH1c2]B/]zH50 is assumed, c1]B/]uB

1c2]B/]zB50 is concluded. The equivalent conditions d
scribed above are summarized as

c1

]B

]uB
1c2

]B

]zB
50 ⇔ c1

]B

]uH
1c2

]B

]zH
50

⇔ c1

]G

]uB
1c2

]G

]zB
50 ⇔ c1

]G

]uH
1c2

]G

]zH
50

⇔ c1

]x

]uB
1c2

]x

]zB
5c1

]x

]uH
1c2

]x

]zH
. ~A13!

Thus, either Boozer or Hamada coordinates can be use
describe the symmetry condition for the magnetic fie
strength to suppress the neoclassical ripple transport.

APPENDIX B: POLOIDAL AND TOROIDAL VISCOSITY
COEFFICIENTS

The poloidal and toroidal flows can be linearly related
the parallel flows and the radial gradient forces as

F ^ua
u&/x8

^ua
z&/c8G5

4p2

V8 F1 2cBz
(Boozer)/~eax8^B2&!

1 cBu
(Boozer)/~eac8^B2&!

G
3F ^uiaB&/^B2&

Xa1
G ,

F 2

5pa
^qa

u&/x8

2

5pa
^qa

z&/c8
G5

4p2

V8 F1 2cBz
(Boozer)/~eax8^B2&!

1 cBu
(Boozer)/~eac8^B2&!

G

3F 2

5pa
^qiaB&/^B2&

Xa2

G , ~B1!
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where the flux-surface-averaged poloidal and toroidal flo
in the left-hand side do not depend on what flux coordina
(s,u,z) are chosen. From Eq.~17!, we obtain

FsPa

sTa
G5 4p2

V8 F x8Bu
(Boozer)/^B2& 2

ea

c
c8x8

c8Bz
(Boozer)/^B2&

ea

c
c8x8

G FsUa

sXa
G .
~B2!

Then, we find from Eqs.~18!, ~19!, and~B2! that the poloidal
and toroidal viscosities are written in terms of the para
viscosities and the radial fluxes as

F ^BP•~¹•pa!& ^BP•~¹•Qa!&

^BT•~¹•pa!& ^BT•~¹•Qa!&
G

5
4p2

V8 F x8Bu
(Boozer)/^B2& 2

ea

c
c8x8

c8Bz
(Boozer)/^B2&

ea

c
c8x8

G
3F ^B•~¹•pa!& ^B•~¹•Qa!&

Ga
bn qa

bn/Ta
G . ~B3!

Using Eqs.~35!, ~38!, ~B1!, and~B3!, we obtain the relations
between the poloidal and toroidal viscosity coefficien
(Ma jPP ,Ma jPT ,Ma jTT) and the coefficients (Ma j ,Na j ,La j)
for the parallel viscosities and the radial fluxes

FMa jPP Ma jPT

Ma jPT Ma jTT
G

5
4p2

V8 F x8Bu
(Boozer)/^B2& 2

ea

c
c8x8

c8Bz
(Boozer)/^B2&

ea

c
c8x8

G FMa j Na j

Na j La j
G

3F x8Bu
(Boozer)/^B2& c8Bz

(Boozer)/^B2&

2
ea

c
c8x8

ea

c
c8x8 G , ~B4!

and correspondingly those between the monoenergetic c
ficients @Ma(K),Na(K),La(K)# and @MaPP(K),MaPT(K),
MaTT(K)],

FMaPP~K ! MaPT~K !

MaPT~K ! MaTT~K !
G

5
4p2

V8 F x8Bu
(Boozer)/^B2& 2

ea

c
c8x8

c8Bz
(Boozer)/^B2&

ea

c
c8x8

G
3FMa~K ! Na~K !

Na~K ! La~K !
G

3F x8Bu
(Boozer)/^B2& c8Bz

(Boozer)/^B2&

2
ea

c
c8x8

ea

c
c8x8 G . ~B5!
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APPENDIX C: NEOCLASSICAL TRANSPORT
COEFFICIENTS FOR RADIAL FLUXES
AND PARALLEL CURRENTS

Integrating Eq. ~3! multiplied by mav i and
mav i(mav2/2Ta25/2) and taking the flux surface averag
give the parallel momentum balance equations

^B•~¹•pa!&2naea^BEi&5^BFia1&,

^B•~¹•Qa!&5^BFia2&. ~C1!

The parallel friction forcesF ia1[*d3vmav iCa
L( f a1) and

F ia2[*d3vmav i(mav2/2Ta25/2)Ca
L( f a1) in the right-hand

side of Eq.~C1! are related to the parallel flowsuia andqia

by the friction-flow relations~in the 13M approximation!

F ^BFia1&
^BFia2&

G5(
b

F l 11
ab 2 l 12

ab

2 l 21
ab l 22

ab GF ^Buib&

2

5pb
^Bqib&

G , ~C2!

where the coefficientsl jk
ab are defined by Eq.~4.4! in Hirsh-

man and Sigmar,2 and satisfy the conditionsl jk
ab5 l k j

ba and
(al 1k

ab50, which are derived from the self-adjointne
and the momentum conservation property of the lineari
collision operator, respectively. The parallel viscosit
^B•(¹•pa)& and ^B•(¹•Qa)& in the left-hand side of Eq
~C1! are written by Eq.~35! in terms of the parallel flows
^Buia& and ^Bqia&. Then, combining Eqs.~35!, ~C1!, and
~C2!, we obtain

(
bÞe

S dab

^B2& FMa1 Ma2

Ma2 Ma3
G2F l 11

ab 2 l 12
ab

2 l 21
ab l 22

ab G D F ^Buib&

2

5pb
^Bqib&

G
52FNa1 Na2

Na2 Na3
G FXa1

Xa2
G1Fnaea^BEi&

0 G
1F l 11

ae 2 l 12
ae

2 l 21
ae l 22

ae GF ^Buie&

2

5pe
^Bqie&

G
.2FNa1 Na2

Na2 Na3
G FXa1

Xa2
G for ion speciesa~Þe! ~C3!

and

S 1

^B2& FMe1 Me2

Me2 Me3
G2F l 11

ee 2 l 12
ee

2 l 21
ee l 22

ee G D F ^Buie&

2

5pe
^Bqie&

G
52FNe1 Ne2

Ne2 Ne3
G FXe1

Xe2
G2Fnee^BEi&

0 G
1 (

aÞe
F l 11

ea 2 l 12
ea

2 l 21
ea l 22

ea GF ^Buia&

2

5pa
^Bqia&

G . ~C4!

Here, general cases of multispecies of ions are conside
We should note thatme /ma!1 for ion speciesa and that the
parallel electric field term and the ion–electron friction te
in Eq. ~C3!, are smaller than the other terms by a factor
Downloaded 03 Mar 2009 to 133.75.139.172. Redistribution subject to AIP
d

d.

f

O@(me /ma)1/2#. Then, neglecting theseO@(me /ma)1/2#
terms in Eq.~C3!, the lowest-order parallel flowŝBuia& and
^Bqia& for ion speciesa(Þe) can be expressed as a line
combination of the thermodynamic forcesXb1 and Xb2 (b
Þe), and these expressions are substituted into Eq.~C4! in
order to write the electron parallel flows^Buie& and ^Bqie&
in terms of the thermodynamic forcesXe1 , Xe2 , Xb1 , Xb2

(bÞe), and^BEi&. Substituting these expressions of^Buie&
and ^Bqie& in turn into Eq. ~C3!, the parallel ion flows
^Buia& and^Bqia& (aÞe) of the next order can be given i
terms of the ion and electron thermodynamic forces. O
the relations of the parallel flows to the thermodynam
forces are obtained for all speciesa, substituting them into
Eqs.~35! and~B1! and using Eq.~B3! yield the expressions
of the radial neoclassical fluxes@Ga

bn,qa
bn#, the parallel, po-

loidal, and toroidal viscosities @^B•(¹•pa)&,^B•(¹
•Qa)&,^BP•(¹•pa)&, ^BP•(¹•Qa)&, ^BT•(¹•pa)&, ^BT•(¹
•Qa)&#, and the poloidal and toroidal flow
@^ua

u&,^qa
u&,^ua

z&,^qa
z&#, in terms of the thermodynamic

forces@Xe1 ,Xe2 ,Xb1 ,Xb2(bÞe),^BEi&#.
Applying the procedures described above to the case

toroidal plasma consisting of electrons and a single spe
of ions, we can derive the following transport equations
the neoclassical radial fluxes of particles and heat and
neoclassical parallel electric current~bootstrap current!

F Ge
bn

qe
bn/Te

G i
bn

qi
bn/Ti

JE
BS

G5F L11
ee L12

ee L11
ei L12

ei L1E
e

L21
ee L22

ee L21
ei L22

ei L2E
e

L11
ie L12

ie L11
i i L12

i i L1E
i

L21
ie L22

ie L21
i i L22

i i L2E
i

LE1
e LE2

e LE1
i LE2

i LEE

G F Xe1

Xe2

Xi1

Xi2

XE

G ,

~C5!

where the forceXE associated with the parallel electric fie
is denoted by

XE[^BEi&/^B2&1/2, ~C6!

and the bootstrap currentJE
BS is defined by the difference

between the total parallel electric currentJE and the classica
parallel electric currentJE

cl ,

JE
BS[JE2JE

cl[nee^B~ui i2uie!&/^B
2&1/22sSXE , ~C7!

with the classical Spitzer conductivity sS

[(nee
2tee/me) l̂ 22

e /@ l̂ 11
e l̂ 22

e 2( l̂ 12
e )2#. Here, the dimensionles

friction coefficients l̂ i j
a [2(taa /nama) l i j

aa are given byl̂ 11
e

5Zi , l̂ 12
e 5 3

2Zi , l̂ 22
e 5&1 13

4 Zi , and l̂ 22
i 5& with the ion

charge numberZi , and high-order terms with respect t
(me /mi)

1/2 are neglected. Defining the 232 matrices for
electrons and ions (a5e,i ) by

La[FLa1 La2

La2 La3
G , Ma[

taa

nama^B
2& FMa1 Ma2

Ma2 Ma3
G ,

Na[
taa

nama
FNa1 Na2

Na2 Na3
G , E11[F1 0

0 0G , ~C8!

Le[F l̂ 11
e 2 l̂ 12

e

2 l̂ 12
e l̂ 22

e G , L i[F0 0

0 l̂ 22
i G ,
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the transport coefficients in Eq.~C5! are explicitly given by

FL11
aa L12

aa

L21
aa L22

aaG5La2
nama

taa^B
2&

Na~Ma1La!21Na

1dai

neme

teê B2&
Ni~Mi1L i !

21E11~M e
21

1Le
21!21E11~Mi1L i !

21Ni , ~C9!

FL11
ei L12

ei

L21
ei L22

ei G5FL11
ie L21

ie

L12
ie L22

ie G
52

neme

teê B2&
Ne~Me1Le!

21LeE11~Mi

1L i !
21Ni , ~C10!

@LE1
e LE2

e #52@L1E
e L2E

e #5
nee

^B2&1/2@1 0#~Me1Le!
21Ne ,

~C11!

@LE1
i LE2

i #52@L1E
i L2E

i #

52
nee

^B2&1/2@1 0#~Me1Le!
21MeE11

3~Mi1L i !
21Ni , ~C12!

LEE52
nee

2tee

me
@1 0#$Le

212~Me1Le!
21%F10G . ~C13!

In the right-hand side of Eq.~C9!, the term withdai ([1 for
a5 i , 0 for a5e), which is of O@(me /mi)

1/2#, is kept in
order to reproduce the intrinsic ambipolar particle fluxesG i

5Zi
21Ge in the symmetric case~see Appendix D!. It should

be noted that the transport coefficients given in Eqs.~C9!–
~C13! satisfy the Onsager relations

L jk
ab5Lk j

ba , L jE
a 52LE j

a ~a,b5e,i ; j ,k51,2!. ~C14!

APPENDIX D: SYMMETRIC CASE

Here, we consider the symmetric case, in wh
c1]B/]uB1c2]B/]zB50 holds. It should be recalled tha
the axisymmetric, poloidally symmetric, and helically sym
metric cases correspond toc150, c250, andc1•c2Þ0, re-
spectively. As shown in Eq.~A13!, this case is also describe
by c1]B/]uH1c2]B/]zH50. Then, Eqs.~17! and~B2! yield

c1

sPa

x8
1c2

sTa

c8
50,

c1Bu
(Boozer)1c2Bz

(Boozer)

^B2&
sUa1~2c1c81c2x8!

ea

c
sXa50,

~D1!

c1Bu
(Boozer)1c2Bz

(Boozer)

^B2&
GUa1~2c1c81c2x8!

ea

c
GXa50.

Thus, we find from Eq.~18! that the viscosities and the vis
cosity coefficients associated with the symmetry direct
vanish
Downloaded 03 Mar 2009 to 133.75.139.172. Redistribution subject to AIP
n

c1

x8
^BP•~¹•pa!&1

c2

c8
^BT•~¹•pa!&

5
c1

x8
^BP•~¹•Qa!&1

c2

c8
^BT•~¹•Qa!&50,

c1

x8
Ma jPP1

c2

c8
Ma jPT5

c1

x8
Ma jPT1

c2

c8
Ma jTT50. ~D2!

The expressions for the banana-plateau particle and
fluxes for the symmetric case in terms of the parallel visco
ties are derived from Eqs.~18!, ~19!, and~D1! as

Ga
bp5

c~c1Bu
(Boozer)1c2Bz

(Boozer)!

ea~c1c82c2x8!^B2&
^B•~¹•pa!&,

qa
bp

Ta
5

c~c1Bu
(Boozer)1c2Bz

(Boozer)!

ea~c1c82c2x8!^B2&
^B•~¹•Qa!&. ~D3!

Using Eq.~D3! and the parallel momentum balance in E
~C1! with the charge neutrality condition(anaea50, we ob-
tain the well-known intrinsic ambipolarity condition that, i
the symmetric case,(aeaGa

bp50 is satisfied for arbitrary val-
ues of the thermodynamic forces.

Equations~36!, ~37!, ~46!, and~D1! give the relations of
the coefficients @Ma j ,Na j ,La j# and @Ma(K),
Na(K),La(K)],

Na j

Ma j
5

La j

Na j
5

Na~K !

Ma~K !
5

La~K !

Na~K !

5
c~c1Bu

(Boozer)1c2Bz
(Boozer)!

ea~c1c82c2x8!^B2&
, ~D4!

and the geometric factorGa
(BS) ,

Ga
(BS)5

c1Bu
(Boozer)1c2Bz

(Boozer)

2c1c81c2x8
, ~D5!

for the symmetric case.

APPENDIX E: EFFECTS OF THE EÃB DRIFT

In the left-hand side of Eq.~3!, the collisionless orbit
operatorVi contains only the part of particles’ parallel mo
tion because other drift motions are neglected as higher-o
terms in the gyroradius expansion. Here, in order to cons
additional effects of theE3B drift on the neoclassical trans
port coefficients, we use the drift kinetic equation given b

V fa12Ca
L~ f a1!52vda•¹ f aM1

ea

Ta
v iB

^BEi&

^B2&
f aM ,

~E1!

where the operatorV[Vi1VE consists of the parallel mo
tion part Vi given by Eq.~5! and theE3B drift part VE

defined by

VE[vE•¹[
cEs

^B2&
¹s3B•¹, ~E2!

with ¹ taken for (v,j) being fixed. TheE3B drift operator
VE given by Eq.~E2! has the same form as employed in t
DKES19,20 and by Taguchi.32 Here, following Taguchi,32 we
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neglect effects ofvE•¹$*d3v f a1@1,(1
2mav22 5

2Ta)#% in the
density and energy balance equations, and accordingly
sume that the incompressibility conditions in Eq.~8! and the
expressions for the local parallel flows in Eq.~11! are still
valid. Then, using Eq.~13!, Eq. ~E1! is rewritten as

Vga2Ca
L~ga!5Ha

21Ha
1 . ~E3!

Here, Ha
2 is equal toHa

( l 51) given by Eq.~15! and Ha
1 is

written in the same expression as in the right-hand side
Eq. ~16! if we note thatsUa , sXa , sPa , andsTa now in-
clude theE3B terms and are redefined by

sUa52mav2P2~j!B•¹ ln B2VE~mavjB!

52V~mavjB!,

sXa52v2P2~j!
b•¹~BŨ!

2Va
2VES B

Va
vjŨ D ,

~E4!
sPa52mav2P2~j!BP•¹ ln B2VE~mavjBP•b!,

sTa52mav2P2~j!BT•¹ ln B2VE~mavjBP•b!,

respectively. The superscripts1 and2 in Ha
1 andHa

2 rep-
resent the symmetric and anti-symmetric parts with resp
to the transformation (j,Es)→(2j,2Es), respectively. In
this appendix, we also assume the stellarator symme
B(s,u,z)5B(s,2u,2z), which is satisfied by practically
all helical devices. Then, all neoclassical transport coe
cients are even functions ofEs .

Using what we have noted above, we can show th
even if E3B drift term is included, Eqs.~18!–~44! in Secs.
II and III are still valid by replacingVi with V[Vi1VE

FIG. 6. Poloidal and toroidal viscosity coefficients as a function ofcEs /v
for eh50.05 andnD /v5331026. Other parameters are the same as in S
IV. Curves with circles, crosses, and triangles representM PP* , 2M PT* , and
M PP* , respectively.
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where it appears.@Note that, by doing this replacement in E
~40!, definitions of boths1

1 and s3
1 coincide with those in

Rij and Hirshman20 even for EsÞ0.] Also, Eqs. ~46! and
~54!–~56! are available. Thus, using these formulas, we c
calculate dependence of the neoclassical coefficients on
radial electric field. Figure 6 shows the normalized mono
ergetic neoclassical viscosity coefficientsM PP* , M PT* , and
MTT* as a function ofcEs /v, which are numerically obtained
in the same way as in Fig. 5. Here,eh50.05 andnD /v53
31026 are used while other parameters are the same a
Sec. IV. These parameters correspond to the 1/n regime for
the case ofEs50. In Fig. 6,M PP.2M PT.MTT and their
reduction with increasingcEs /v are clearly seen. The
Es-dependent neoclassical transport coefficients for ra
fluxes and parallel currents can also be calculated in the s
way as in Appendix C.
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